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Breast cancer is the most common type of cancer among women, accounting for nearly 

1 in 3 cancers [1]. It is also the most common cause of cancer-related mortality among 

women, accounting for approximately 411,000 deaths each year [2], which is 

approximately 15% of all cancer-related deaths [3]. The lifetime risk of developing 

breast cancer is as high as 1 in 8 women in some Western countries [4] and a 5-year 

prevalence of approximately 4.4 million cases worldwide [1]. In 2013 alone, an 

estimated 232,340 new cases of invasive breast cancer were expected to be diagnosed 

among women in US, as well as an estimated 64,640 additional cases of in situ breast 

cancer. That year, approximately 39,620 US women were expected to die from breast 

cancer. Only lung cancer accounts for more cancer deaths in women [5]. 

 

The standard of care nowadays for early-stage breast cancer includes whole breast 

irradiation in case a breast conserving strategy is applicable [6]. The purpose of the 

irradiation is to minimize the risk of loco-regional failure and thus ultimately improve 

disease-specific survival while aiming to minimize side effects to the heart or lungs or 

cosmetics. This strategy includes irradiating the mammary gland and in node-positive 

patients also loco-regional lymph nodes with doses around 50 Gy in about 25 fractions 

delivered as daily treatment 5 days per week for 5 weeks. Several large trials have 

demonstrated this as a safe procedure with local failure rates of 0.5–1% per year of 

follow-up and acceptable side effects and cosmetics [7]. In a meta-analysis study, it was 

reported that radiotherapy to the conserved breast halves the rate at which the disease 

recurs and reduces the breast cancer death rate by about a sixth. These proportional 

benefits vary little between different groups of women [7]. 

 

Nevertheless, radiotherapy for early stage breast cancer can decrease breast cancer 

mortality but increase other mortality, mainly from heart disease and lung cancer [8]. 

The mean cardiac dose from irradiation of a left-sided breast cancer can be two or three 

times than for a right-sided breast cancer. The mean dose to the ipsilateral (i.e., on the 

same side as the breast cancer) lung can also be two or three times the mean dose to 

the contralateral lung [9]. Particularly during the 1970s, when typical heart and lung 

exposure were greater than now, the laterality of an irradiated breast cancer could 
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measurably affect cardiac mortality and mortality from lung cancer decades later. To 

further improve control and to reduce side effects, boost techniques [10] and 

accelerated partial breast irradiation (APBI) [11] have been introduced in the clinic. 

Long-term outcome were compared. Through a systematic analysis, researchers 

demonstrate the long-term effectiveness and safety of APBI comparable to that of 

whole-breast irradiation for selected patients with early breast cancer [12]. This also 

provides the rationale to further optimize the treatment plan for selected patients, 

instead of applying a standardized treatment on each patient. 

 

Besides, it is also desirable to identify patients at high risk for local recurrence to better 

guide optimal treatment (probably with high dose) of individual patients [13]. Especially, 

young age has been associated with a high risk of local recurrence after breast 

conserving therapy; at present, it is poorly understood what the biological mechanism 

for this association is. The risk assessment for local recurrence is still primarily based 

on traditional clinical and histopathologic factors. More studies with the predictors like 

immunohistochemical markers [14], molecular subtypes [15], and gene expression 

profiling [16] are emerging. However, because of the variation in different subtypes of 

breast cancer and variations in the amount of tumor burden remaining after surgery, 

finding robust predictive profiles is complex [13]. Only when such robust predictors for 

local recurrence and sensitivity for systemic treatment and radiotherapy are found, 

better personalized treatment for breast cancer patients will be accomplished. 

 

Thesis Structure 

Predicting the outcome of a treatment for an individual patient is important, however, 

complex. Especially, a classic randomized control trial lasts for 10 years in which 

researchers can compare the long-term outcome of different treatments. The pressing 

need of building prediction models for predicting treatment outcome is observed. 

Therefore, the goals of this thesis are to model the treatment process of breast 

conserving therapy and to build a prediction model for the treatment outcome. The 

thesis starts with modeling surgery impact on the treatment outcome. A step further, a 

general risk modeling framework was developed for breast conserving therapy. The 
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framework was then applied for analyzing the difference between younger and older 

patients and comparing inhomogeneous dose strategy with homogeneous dose 

strategy. The rest of the thesis consists of six chapters as follows: 

 

Chapter 2: Building the disease spread model is the first step to model the breast 

cancer treatment. Deformation appears after the breast tissue was surgically removed. 

This study aims to quantify the deformations in the surgical excision specimen around 

invasive breast cancers. 

 

Chapter 3: Controversy exists about the impact of the width of negative margins on the 

risk of local recurrence in breast conserving therapy. This study explains the 

unexpected observed weak association using a case-control method with simulations. 

 

Chapter 4: Microscopic disease left after tumorectomy is a major cause of local 

recurrence in breast conserving therapy. However, the effect of microscopic disease 

and radiation dose on tumor control probability was seldom studied quantitatively. This 

study presents a risk modeling framework for predicting the local recurrence risk of 

breast conserving therapy. 

 

Chapter 5: Age is an important prognostic marker of patient outcome after breast 

conserving therapy; however, it is not clear how age affects the outcome. This study 

aimed to explore the relationship between age with the cell quantity and the 

radiosensitivity of microscopic disease in relation to treatment outcome. 

 

Chapter 6: Little knowledge is available on the optimal radiation dose distribution in 

relation to microscopic disease. Therefore we investigated the effect of inhomogeneous 

dose distributions on tumor control probability taking into account inhomogeneously 

distributed tumor cells and setup errors. 

 

Chapter 7: Discussion 
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Abstract 

Correctly accounting for the extent of tumour is critical for successful radiation therapy 

of breast cancer. Guidelines to establish the extent of CTV margins can be derived from 

correlation studies between pre-treatment imaging and pathology. However, this 

correlation may be compromised by deformations between in-vivo and ex-vivo imaging. 

The aim of this preliminary study was to quantify the deformations in the surgical 

excision specimen around invasive breast cancers. The study was performed on 7 

patients who underwent wide-local excision (WLE) of breast cancer. The MR slices 

were reconstructed in the direction of the resection plane at pathology. The 

displacements of corresponding parenchyma structures were quantified in radial 

directions around the invasive index tumor using the distance transform. The relative 

tissue deformations were computed from these displacements. The results suggest that 

a mean tissue deformation of 12% may occur in the CTV. 
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Introduction 

Breast Cancer is the most common cancer and the second leading cause of cancer 

death in women in Western countries. Classical treatment consists of surgery (for early 

stages), chemotherapy, radiotherapy or a conbination thereof. With continuous 

improvement of treatment modalities over the years, the 5-year local recurrence rate 

after breast-conserving therapy (BCT) varies from 3% to 15% with survival rates of 

approximately 92% [1]. 

 

Because the majority of local recurrences occur in the tumor bed [2], residual tumor 

cells in the proximity of the gross tumor volume (GTV) after treatment are likely one of 

the main causes for tumor recurrence after BCT. The combination of radiotherapy and 

surgery aims to treat all cancer-bearing tissues while involving as little healthy 

surrounding tissues as possible. Hence, it is important to accurately assess the 

extension of the disease at pre-treatment imaging. Despite recent progress, 

uncertainties about the achieved margins during surgical excision and the microscopic 

spread of disease are major factors that limit further reduction of the boost volume. 

Pathology studies addressing the distribution of microscopic disease around invasive 

breast cancer are, however, sparse and have mostly focused on patients undergoing 

mastectomy during the onset of current breast-cancer screening programs [3]. In a 

more recent study [4], the incidence and distance of microscopic disease around 

primary breast tumors were assessed in patients undergoing BCT. In these studies, the 

impact of tissue deformations around the GTV between in-vivo imaging and ex-vivo 

pathology was not taken into account. The aim of this preliminary study was to quantify 

the deformations of breast tissue around the GTV between in-vivo MR imaging and ex-

vivo pathology processing. Consquently, the correlation between pre-treatment imaging 

and pathology will be corrected.  
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Material and methods 

Patients 

 

Seven patients who underwent BCT for invasive cancer after conventional breast 

imaging, clinical examiniation, and contrast-enhanced MRI were included (Table 1). 

Table 1: Patient and tumor characteristics. 

Patients 

     N 

     Age (years) 

     Left Breast with tumor (Right) 

 

7 

60 (38-72) 

4 (3) 

Tumors 

     Mean tumor dianmeter (mm) 

     Mass margin appearance 

          Irregular 

          Spiculate 

          Smooth      

     Mass margin sharpness 

          Sharp 

          Vague     

 

12.5 (7.3-18.9) 

 

3 

1 

3 

 

3 

4 

 

Pathology X-ray Images 

 

During surgery, the orientation of the excision specimen was marked by sutures and a 

small skin flap. At pathology, the edges of the specimen were inked with different colors 

to indicate the original orientation of the specimen in the breast. After inking, the 

specimens were cooled to -20
o
C for 20 minutes and sectioned in 4-mm thick slices 

(Figure 1A). The orientation of slicing was approximately perpendicular to the nipple-to-

tumor direction. The slices were sealed in vacuum-locked bags, and digital X-ray 

images were obtained (Figure 1B).  
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MR Images 

 

MRI was performed with a 1.5-T scanner (Magnetom, Siemens Medical Systems, 

Erlangen, Germany) using a coronal fast low-angle shot three-dimensional (FLASH-3D) 

technique. Both breasts were imaged with the patient in prone orientation, using a 

dedicated phased-array bilateral breast coil. One series was acquired before and four 

series after intravenous injection of contrast agent (ProHance, Bracco-Byk Gulden, 

Konstanz, Germany; 0.1 mmol/kg body weight, at a rate of 2-4 ml/s). The series were 

acquired at intervals of approximately 120s to achieve theoretically optimal time points 

to describe contrast uptake in the lesion. The following MRI parameters were used: T1-

weighted sequence, repetition time 8.1ms, echo time 4.0ms, reconstructed in-plane 

matrix 256×256 pixels, isotropic in-plane resolution of 1.35×1.35 mm2, 100 slices with 

thickness 1.35mm, no fat suppression. Subtraction images were reformatted and 

displayed in three perpendicular planes (coronal, transversal, and sagital) on a custom 

build viewing station to examine initial and late enhancement. The largest tumor 

diameter at MRI was measured on the initial-enhancement images in the coronal, 

transverse, and sagital directions. 

Figure 1:  (A) Marcoscopic Pathology Slices (B) Digital X-ray photograph  
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The delineated tumor, its estimated orientation from color coding, and the skin flap in 

the excision specimen were used as landmarks to determine the orientation of the 

excised tissue in the MR images. The MRI was subsequently resampled in the 

pathology slicing direction using the following procedure. First, the location of the nipple 

was recovered for each breast with tumor (Figure 2A). The orientation of the line 

connecting the nipple with the centre of gravity in the tumor was subsequently 

established (Figure 2B). According to the surgical and pathology protocol, this line 

(yellow) indicates the normal of the pathology slicing planes. The pathology slicing 

process was computer simulated using the VTK box-widget tool (Figure 2C). Finally, the 

oblique slice with the largest tumor diameter in the MR images was stored ( which we 

will refer to as the target image), as well as the slices above and below the target image 

(Figure 2D). The latter MR images were used to verify the estimation of the slicing 

orientation. 

 

Registration (Deformation Analysis) 

 

The pathology X-ray image with the largest tumor diameter and the MR target image 

were registered to estimate the relative deformations between them. For this purpose, 
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we first aligned the index tumor using a rigid alignment procedure. Next, corresponding 

fiducial structures in the prenchyma structure around the index tumor were identified in 

each image. The distance of fiducial point to GTV in radial directions was calculated 

using distance map [5] of the binary representation of GTV, and the relative deformation 

was quantified by the ratio of distances of corresponding fiducial points.  

Figure 2: Four steps to obtain MR image slice in the pathology slicing direction. 

 

 

 

Results and Discussion 

X-ray images of the index tumor and corresponding MR slices are shown for all seven 

patients in Figure 3. The slices with the largest tumor diameter are shown. The skin and 

tumor could be identified in all image pairs, indicating that the correct slice pairs were 

identified. Patient 1 and 7 were skipped from deformation analysis, because no 
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corresponding fiducial structures could be identified. The average radial deformation of 

the structures between the MRI target images and the pathology X-ray images was 1.12 

(the minimum 0.79, the maximum 1.61, and std. 0.26).  This preliminary result suggests 

that distances of microscopic disease around the index tumor may be underestimated in 

pathology studies compared to their counterpart distances inside the patient during 

prone setup. 

 

Our preliminary study also has some limitations. First, variation in the exact slicing 

orientation achieved by the pathologists. We made the assumption that pathology 

slicing is perpendicular to the connected line between nipple and tumor, which is 

conform the clinical protocols. Another limitation is that the registration is currently 

performed in 2-D (in the plane with the largest cross section through the tumor). 

Deformations of the tissue were quantified relative to a prone patient setup (conform the 

setup during MRI scanning), while typical setup of breast cancer patients during 

radiotherapy is in supine orientation. In supine setup, the deviations are expected to be 

smaller, but this issue is topic of current research. 

 

Conclusion 

Breast tissue in the proximity of GTV may be compressed by 12% on average between 

in-vivo MR imaging in prone patient orientation and ex-vivo pathology evaluation.  
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Figure 3: Registration between the pathology X-ray images and the MR images of 

seven patients in total. The pathology X-ray images are shown in the first and fourth 

columns. The MR images are shown in the second and fifth columns. The registration 

overlay images are shown in the third and sixth columns where the pathology X-ray 

images are overlaid in color. 
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Abstract 

 

Background and Purpose 

This study aims to explain the unexpected weak association between the width of the 

negative surgical margin and the risk of local recurrence in breast conserving therapy. 

 

Materials and Methods 

We utilized a classical tumor-control probability (TCP) model to estimate the risk of local 

recurrence, considering the heterogeneity of microscopic disease spread observed 

around the invasive index tumor in a pathology dataset (N=60). The estimated result 

was compared with the true risk observed in the EORTC boost-versus-no-boost trial 

(N=1616). 

 

Results 

The disease volume beyond any given distance from the edge of the index tumor varied 

considerably among patients. Adopting this disease volume variation in the TCP model 

accurately reproduced the local recurrence rate as function of surgical margin width in 

the boost-versus-no-boost trial (Pearson’s correlation coefficients are 0.652 and 0.862, 

and significant at the 0.05 and 0.01 level for absence and presence of a radiation boost, 

respectively).   

 

Conclusions 

The impact of a negative margin width on local recurrence is limited due to the large 

variation of microscopic disease that can reach large quantities beyond any given 

distance from the edge of the index tumor across the patient population of breast-

conserving therapy. 

  



Impact of Negative Margin Width on Local Recurrence in Breast Conserving Therapy 

 

- 22 - 

 

Introduction 

 

Breast-conserving therapy (BCT) has become a standard therapeutic option for a large 

proportion of patients with early-stage invasive breast cancer. In these patients, BCT is 

typically a preferred treatment over mastectomy, because the survival rates after 

treatment are comparable, while breast conservation serves cosmetic and psychological 

benefits [1]. However, radiotherapy also increased long-term mortality from heart 

disease and lung cancer, as well as severe treatment-induced fibrosis [2,3].  Hence, 

there is much interest to conform the radiation boost field closer to the expected location 

and density of tumor cells, but it is currently unknown how to accomplish this. 

 

The European Organization for Research and Treatment of Cancer (EORTC) 22881-

10882 trial was designed to investigate the effect of a boost of 16 Gy radiation dose 

directed to the tumor bed after whole breast irradiation (WBI) of 50 Gy. In the previous 

multivariate analyses [3-5], an increased risk of local recurrence (LR) was associated 

with high-grade invasive carcinoma, age at diagnosis younger than 50 years, positive 

surgical margin and no additional boost, independently. However, the LR risk was not 

obviously influenced by the width of surgical resection margins (SRMs), if the SRM 

status is not positive [5]. According to the central pathology review, patients with close 

(0-2 mm) or negative (>2 mm) margin have similar risk of local recurrence. Comparable 

results have also been observed in other large trials [6,7]. Conversely, Smitt et al. [8] 

found that a close SRM is associated with high LR risk. Several pathology tumor load 

studies [9,10] have also shown that a high quantity of residual tumor cells after breast-

conserving surgery (BCS) is correlated with a narrow negative SRM. Although SRM is 

frequently considered in the planning of RT, an explanation is lacking for these 

contradictory results on the importance of SRM. Hence, uncertainty exists how to tailor 

radiotherapy to individual patients after BCS, optimizing local tumor control while 

preserving cosmetic outcome.  

 

The purpose of this study was to assess the relationship between surgical resection 

margin and local recurrence rate after BCT. This aim was pursued by adopting the 
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microscopic disease spread distribution around early-stage invasive breast cancers 

from a pathology study in a classic tumor control probability (TCP) model, and 

comparing the result with a case-matched long-term local recurrence rate after BCT in 

the EORTC boost-versus-no-boost trial. 

 

Materials and Methods 

 

Short Overview of Patients, Study Groups and Statistical Analysis 

The study was based on two clinical datasets: the EORTC 22881-10882 boost-vs-no-

boost trial (with pathology review) dataset and the Multi-modality Analysis and 

Radiological Guidance IN breast conServing therapy (MARGINS) dataset. In short 

(Figure 1), Webb's TCP model [11] was applied to the distribution of microscopic 

disease spread obtained from the MARGINS dataset, and subsequently used to 

estimate the treatment outcome of patients with tumors excised with different negative 

SRM widths, i.e., the smallest distances between the invasive index tumor edge to the 

surgical resection edge. Next, these estimates were compared with the LR rates in the 

EORTC dataset. The similarity was measured by the Pearson’s correlation coefficient.  

 

The EORTC dataset 

The EORTC dataset with pathology review accrued 1,616 patients from 1989 to 1996 

[5]. We used a subset of these data (N=1281) excluding tumors with extensive 

intraductal component (EIC+) and excluding the cases with SRM width larger than 10 

mm. The latter is because we lacked sufficient events to calculate an accurate LR rate 

for SRM larger than 10 mm (there are only 42 patients with SRM width larger than 10 

mm in total). The original objective of this trial was to assess the effect of the boost dose 

in early-stage breast cancer patients treated with BCT. In short, all patients underwent 

lumpectomy and axillary lymph node dissection followed by RT. After informed consent, 

patients after BCS were randomly assigned to receive WBI (total dose of 50 Gy in 5 

weeks with a dose per fraction of 2 Gy) with or without a boost of 16 Gy (2 Gy per 

fraction) to the tumor bed.  The surgical margin width (0 mm up to 30 mm), was 

measured for each patient. Margin status was recognized as positive if invasive tumor 
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was seen immediately at the inked edge of the resection, close if the margin width was 

2 mm or less, and negative if it was greater than 2 mm or if no residual tumor was 

present.  

 

Figure 1: Overview of our study. The relationship between Vol and LR is derived from 

Webb’s TCP model and the relationship between Vol and Dist is extracted from the 

MARGINS dataset. Both were used in our simulation in order to obtain the correlation 

between LR and Dist. The result is finally compared with the observation in the EORTC 

dataset.  

 

 

The MARGINS dataset 

In 2000, the MARGINS study started at our hospital [10]. Sixty-two patients who did not 

undergo neo-adjuvant chemo/hormone-therapy and who had no primary DCIS on core 

biopsies were recruited from MARGINS to undergo additional and more extensive 

pathology assessment of the tissue after BCS. The wide-local excision (WLE) specimen 

was subjected to detailed microscopic examination using complete embedding. The 

type (DCIS, invasive foci, and lymphatic emboli), rate, and quantity of tumor foci were 

reconstructed at various distances to the edge of invasive index tumor. In the current 

study, we included all 60 patients without EIC. The incidence and spread of microscopic 

disease were quantified as a function of distance around the invasive tumor.  
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To match patient and tumor characteristics between the EORTC dataset and the 

MARGINS dataset, the following sampling strategy was employed. We first calculated 

the proportion of patients for two prominent factors that are associated with local 

recurrence (patient age and histopathological grade [4]) in the MARGINS dataset, and 

then randomly selected one subset of patients from each treatment arm in the EORTC 

dataset to match against this proportion. In order to avoid selection bias from a specific 

subset, we repeated the selection 100 times and computed the average risk of local 

recurrence from all selections. The final differences between the patient/tumor 

characteristics in the MARGINS dataset and in the EORTC dataset were examined 

using the non-parametric Mann-Whitney U test (SPSS v15.0). 

 

Tumor-control probability modeling 

Webb's TCP model describes the probability of tumor control (TCP) as a function of the 

radiosensitivity ( ), the volume of tissue containing tumor cells (Vol), the density of 

tumor cells (  ) and the total radiation dose (D) considering a homogeneous dose 

distribution, as follows: 

 dDVolfTCP )]exp(exp[)(   , 

 

where the inter-patient heterogeneity of radiosensitivity is represented by the probability 

density function )(f . In our study, the radiosensitivity heterogeneity of residual 

microscopic disease was considered to be normally distributed across the patient 

population. The cell density of residual microscopic disease (  ) around the index tumor 

was obtained on a representative set of 36 digitized microscopy slides from 12 patients 

using a cell-counting algorithm (Aperio Technologies Inc., US [12]). Two radiation doses 

(D) were considered in this model, i.e., no-boost (50Gy) and boost (66Gy), representing 

the two arms in the EORTC trial. Vol was obtained from the MARGINS dataset, and 

TCP was derived from the EORTC 22881-10882 trial at medium follow-up of 10 years in 

the previously mentioned subsets of patients. Finally, the parameters   and )(f in 

Webb’s TCP model were estimated by a Bayesian Inference technique [13].  
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Monte Carlo simulation 

Our procedure to combine the TCP model, the MARGINS dataset, and the EORTC 

dataset is depicted in Figure 1. The TCP model is correlated with various volumes of 

microscopic disease (Vol) and used to generate the estimates of local recurrence risk 

(LR=1-TCP). The MARGINS dataset describes the probability of disease volume Vol 

beyond various distances (Dist) from the edge of the index tumor (Vol-Dist relationship). 

The EORTC dataset includes associations between negative surgical resection margins 

(SRM) and LR rate. Because the MARGINS dataset describes the incidence of disease 

beyond distance Dist from the edge of the index tumor and residual microscopic 

disease in the breast can only occur beyond the surgical resection margin, Dist is 

directly comparable to SRM (more in the discussion section). Using the optimal 

radiosensitivity parameters, we estimated the correlation between LR and Dist using Vol 

as a “bridge” in the Monte Carlo simulation. Next, we compared our estimate (LR-Dist 

relationship) with the true observations (LR-SRM relationship) in the EORTC trial using 

the Pearson-Correlation coefficient. 

 

Results 

 

The EORTC dataset 

The original EORTC data was stratified according to previously indentified risk factors 

for both treatment arms (Table 1).  

 

The MARGINS dataset 

The volume of microscopic disease surrounding the index tumor in the patient groups 

varies considerably across SRM widths. Figure 2 illustrates these various observed 

volumes beyond different distances from the edge of the index tumor. For instance, the 

average volume of surrounding microscopic disease beyond 5 mm is about 180 mm3, 

but the range of volume variance spans 0 to 760 mm3. Beyond distance of 10 mm, the 

surrounding microscopic disease can still be 100 mm3 on average, and may reach 380 

mm3 in one-in-twenty cases. The cell density of microscopic disease was estimated at 

4.6E+05 #cells / mm3 on average. The pathology grades of the index tumor are 
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comparable in the MARGINS and the EORTC dataset.  Patients are, however, 5 years 

younger on average in the EORTC dataset (P-value = 0.02), so that a case-control 

design was necessary for compensating a potential effect of age difference (Table 1). 

 

Table 1: Patient and tumor characteristics in the original EORTC dataset and the 

MARGINS dataset 

 EORTC 50 Gy (n 

=627) 

EORCT 66 Gy 

(n=654) 

MARGINS 

(n=60) 

Number % Number % 
Numbe

r 
% 

Age 

(year) 

Mean 54.0 53.7 58.4 

Range 29-75 27-76 36-80 

Younger (≤50) 238 38.0 255 39.0 12 20 

Older (>50) 389 62.0 399 61.0 48 80 

Tumor 

grade 

Grade 1 300 47.8 352 53.8 27 45 

Grade 2 173 27.6 148 22.7 22 36.7 

Grade 3 141 22.5 142 21.7 11 18.3 

Missing 13 2.1 12 1.8 0 0 

 

We randomly selected 495 patients in the boost arm and 499 patients in the no-boost 

arm from the EORTC dataset to match against patient ages and pathology grades in the 

MARGINS dataset. The local recurrence rate for each negative SRM width was 

computed from this EORTC subset. 

 

Monte Carlo simulation 

The Bayesian Inference technique with the data of two radiation arms (66 Gy and 50 Gy) 

yielded a normally-distributed radiosensitivity parameter with mean 0.58 Gy-1 and 

standard deviation 0.18 Gy-1. The resulting TCP curves of Webb’s model for the two 

dose levels are shown in Figure 3. With increasing disease volume, the LR risk 

increases at different speeds by different radiation dose levels. The boost dose (66 Gy) 
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was associated with increased local control for all microscopic disease volumes, but 

particularly for larger volumes. 

 

Figure 2: The various volumes of microscopic disease beyond different distance from 

the edge of the index tumor in the MARGINS database of 60 patients. (Mean +/- 2* 

Standard Deviation) 

 

 

The Monte Carlo simulation reproduced the findings in the EORTC dataset at a 

Pearson’s correlation of 0.652 (significant at the 0.05 level) for the no-boost patients 

and 0.862 (significant at the 0.01 level) for the boost patients (Figure 4). A weak 

association between the width of the negative margins and the local recurrence rate 

was observed (linear regression coefficient= -0.13 %/mm for the no-boost patients and -

0.05 %/mm for the boost patients). The results suggest that the weak association 

between the risk of LR and the SRM width in the EORTC trial is caused by the residual 
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volume of microscopic disease and the variation in volume around the index tumor 

among the patients.  

 

Figure 3: Webb’s TCP model of two radiation-dose arms illustrating the relationship 

between volume of residual microscopic disease and the risk of LR at 10 years. The 

error bar illustrates the 95% confidence interval of the estimated LR values. 

 

 

Discussion 

 

A large SRM width is often considered as an indicator for small residual quantity of 

tumorous disease, which may result in a better treatment outcome. Using the pathology 

information in the current study, we found, however, that the negative SRM width is only 

weakly associated with the risk of local recurrence. Patients with negative or close SRM 

may have similar local recurrence risk because of varying quantities of microscopic 

disease in the remaining breast tissue.  
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Figure 4: The association between the width of negative margins and the local 

recurrence rate in the EORTC dataset (thin lines) and in our simulations (thick lines). 

The error bar illustrates the 95% confidence interval of the estimates in the EORTC 

dataset. 

 

 

Clinical consequences 

Consensus exists that a positive margin after breast-conserving surgery is one of the 

strongest predictors of local recurrence for patients with invasive breast cancer [14]. 

However, negative or close surgical resection margins after BCS are defined, 

interpreted and handled differently by surgeons and radiation oncologists [15], and 

controversy exists about the impact of the width of negative margins on the risk of local 

recurrence [6-8]. A survey [14] has shown no direct relationship between the width of 
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negative margins and the risk of LR in ten large trials. This observation was explained 

by some confounding effects of other factors that influence LR after BCT. Recently, 

Pleijhuis et al. [16] supplemented this result with another survey of trials, in which eight 

of ten studies showed that a close margin is not one of the risk factors for local 

recurrence. Nonetheless, it was recommended [15] that large surgical margin widths are 

necessary in order to assure low risk of LR, which seems a contradiction to the existing 

outcome of clinical trials [14,16]. Our study suggests that the lack of correlation between 

surgical margin width and LR can be explained by inaccuracy in the concept that the 

negative surgical margin width is a good indicator of residual microscopic disease 

quantity in the remaining breast tissue. Patients with the same SRM width may have 

widely varying quantity of residual disease, and this variation makes the effect of the 

SRM width on the LR risk surprisingly small. Another support for this hypothesis is that 

when we decreased the number of patients in our simulation, resulting in an apparent 

but arbitrary distribution of residual microscopic disease, the estimated LR rates 

conversely become random (Figure 5). It suggests that if the number of patients in a 

trial is small, we may observe a strong effect of surgical margin width on local 

recurrence rate, which is actually caused by the distinctness of data or a statistic 

approach without enough power. 

 

To quantify residual tumor load without detailed microscopic analysis, two approaches 

may be possible: 1) to establish an estimate from pre-and-postoperative imaging 

modalities such as magnetic resonance imaging [17]; 2) to establish an estimate based 

on the examination of the surgical specimens using a specific sampling method and a 

computer model (an initial attempt was provided in [18]). In the first approach, 

characteristics of the index tumor at pretreatment imaging in combination with 

information from a core biopsy are analyzed to enrich subgroups of patients at low risk 

for surrounding microscopic disease. However, the current resolution of pretreatment 

images cannot visualize microscopic disease. In the second approach, multiple samples 

from the surgical specimen are checked for the presence of microscopic disease, and 

the findings can be extrapolated to predict remaining microscopic disease in the breast 

using an existing model of microscopic disease spread. One difficulty of this approach 
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lies in the increased workload for pathologists. In current clinical setting, microscopic 

examination is typically restricted to locations in the index tumor and on the edge of 

specimen to indentify tumor grade and surgical margin status. Future studies on the 

clinical, biological, and imaging factors related to patient disease load are expected to 

fill in this gap. 

 

Figure 5: The uncertainty of observed LR rates at difference surgical margins become 

larger with smaller number of patients in the simulation (ten simulations in each 

subfigure; the result of each simulation is reported by two curves. Dotted curve: 50 Gy, 

Dashed curve: 66Gy). 

 

 

An additional boost to the primary tumor bed significantly increased local control in 

patients with negative or close margins at median follow-up of 10 years [3--5]. This 

observation suggests that the local recurrences are caused by the existence of residual 

tumor cells in the region near the primary tumor bed [10], and that the radiation boost 

improves cell kill in that region. Several authors have reported comparable clinical 
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results after conventional RT, IMRT, or brachytherapy [19--21]. Our study suggests that 

instead of further increasing the margin width at surgery, an adaptive therapeutic 

approach may be considered, in which the radiation dose and its distribution are tailored 

to patients in subgroups with different levels of microscopic disease load, provided that 

these subgroups can be identified. Few study results are currently available on this 

‘dose-painting’-like concept [22--23], but none specifically for breast cancer. 

Nevertheless, this concept shows potential to benefit patients with uneven-diffused 

disease load [24].  

 

Study novelty 

To the best of our knowledge, this is the first study to explain the effect of the width of 

negative surgical margins on local-recurrence risk (the EORTC boost-vs-no-boost trial) 

in BCT by taking pathology information (the MARGINS study) into account. 

 

Study limitations 

Our study also has some limitations. First, we obtained the distributions of microscopic 

disease around the invasive index tumor from only 60 patients in the MARGINS study, 

while we used 1616 patients with a pathology review in the EORTC database. Patients 

in the MARGINS study received preoperative MRI. Multicentric disease detected at MRI 

was excluded in the MARGINS data but presumably present in the EORTC data. 

However, so far, no correlation has been found between the risk of LR and multicentric 

disease at MRI [25]. Moreover, the characteristics of patients in the EORTC group were 

matched to those in the MARGINS group.  

 

The second limitation is that only WLE specimens were analyzed in the MARGINS 

study. The average thickness of the specimen slices is 4mm, which may result in 

disease undersampling at pathology. However, we applied the same sampling strategy 

to estimate the remaining disease quantity for all patients, so undersampling (which 

may affect the estimated volume, but is compensated by the estimated values of 

radiosensitivity and its variance in the simulation) is not expected to change the 

conclusion of our findings. Another issue is that disease may have been present in 



Impact of Negative Margin Width on Local Recurrence in Breast Conserving Therapy 

 

- 34 - 

 

regions beyond the surgical specimens in the MARGINS data, so that the quantity of 

surrounding microscopic disease may be underestimated. Nevertheless, large 

variations exist in the ability of surgeons to center the tumor in the excision [16]. Hence, 

in the overall population of patients, tissue information is available at close as well as at 

larger distances from the edge of the invasive tumor. Moreover, we made the 

assumption that the negative SRM width in the EORTC study can be directly compared 

to the distance to the edge of the index tumor in the MARGINS study, which may lead to 

an biased volume of residual microscopic disease in the remaining part of the breast. 

However, this is so far the best we can do, because little knowledge is available on the 

quantity of residual microscopic disease outside any resection margins. We could not 

use mastectomy specimens for detailed microscopic analysis, because mastectomy 

patients typically have different tumor characteristics than BCT patients and may not be 

readily compared to radiotherapy studies after BCT. 

 

The third limitation is that we assumed the mean radiosensitivity of residual microscopic 

disease to be comparable within different patient subgroups and only varies according 

to a Gaussian distribution. Further, we did not consider the intra-patient radiosensitivity 

difference. More detailed analysis of radiosensitivity should be preformed in the future. 

Compared to the findings from our Monte-Carlo simulation with in-vivo data (0.58 Gy-1), 

Ruiz de Almodóvar reported radiosensitivity values ranging from 0.1 to 0.6 Gy-1 using 

in-vitro experiments [26]. Guerrero and Li did a synthesis study with the data from three 

trials and obtained 0.3 Gy-1[27]. However, they assumed the same radiosensitivity 

parameter for all patients and did not consider any heterogeneity. Webb [11] obtained a 

paired value (αmean = 0.325 Gy-1, αstd = 0.13 Gy-1, ρ=109 cells/cm3) by using the volume 

V estimated from the gross tumor diameter. However, the gross tumor is removed after 

BCS and the residual microscopic disease extension should be considered as the main 

contributor of local recurrence.  
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Conclusion 

 

The impact of the negative margin width on local recurrence is limited due to the large 

variation of microscopic disease that can reach large quantities beyond any given 

distance from the edge of the index tumor. Due to this variation, the negative margin 

width is being observed as an insignificant parameter for prognosis in large trials. 

Rather than further increasing the width of the surgical margins, future developments in 

radiotherapy after breast-conserving surgery should focus on techniques to tailor the 

radiation dose to the expected distribution of surrounding microscopic disease. 
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Abstract 

 

Background and Purpose 

Microscopic disease (MSD) left after tumorectomy is a major cause of local recurrence 

in breast conserving therapy (BCT). However, the effect of microscopic disease and RT 

dose on tumor control probability (TCP) was seldom studied quantitatively.  

 

Materials and Methods 

The simulation framework contains three components: disease load prediction, surgery 

simulation, and radiotherapy modeling. We first modeled total disease load and 

microscopic spread with a pathology dataset. Then we estimated the remaining disease 

load after tumorectomy through surgery simulation. The Webb-Nahum TCP model was 

extended by clonogenic cell fraction to model the risk of local recurrence. The model 

parameters were estimated by fitting the simulated results to the observations in two 

clinical trials. 

 

Results 

Higher histopathology grade has a strong correlation with larger MSD quantity. 12.5% of 

the MSD cells remained in the patient’s breast after surgery on average. However, this 

fraction varies considerably among patients (0% to 100%); it indicates the high risk of 

omitting radiotherapy. A small fraction of cells is clonogenic (one in every 2700000 

cells). The mean radiosensitivity was estimated at 0.067 Gy-1 with standard deviation 

0.022Gy-1. 

 

Conclusions 

A relationship between radiation dose and TCP was established in a newly designed 

simulation framework with the detailed disease load, surgery and radiotherapy models.  
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Introduction 

 

Breast cancer is the second leading cause of cancer death in women in Europe and the 

United States [1]. In the past decades it has been demonstrated that the treatment of 

early-stage breast cancer with breast conserving therapy (BCT) yields local tumor 

control and survival equivalent to mastectomy [2,3]. Typically, after conservative surgery 

in which the gross tumor is removed, the whole breast is treated with external beam 

radiotherapy (RT) of 40 to 50 Gy in 3 to 5 weeks, in order to reduce the risk of local 

recurrence (LR) due to microscopic disease (MSD). Since the results of the EORTC 

boost-vs-no-boost trial were published, showing significantly improved local control [4], 

a 16-Gy boost on the part of the tumor excision site especially in young breast cancer 

patients became a treatment of choice. 

Application of a radiation boost field reduces local recurrence [5,6]. However, higher 

radiation dose may lead to inferior cosmetic outcome [7] and cardiac damage [8]. 

Further improvement of the balance between local control and normal tissue 

complication is thwarted by the long follow-up time and large patient numbers required 

to sufficiently power randomized controlled trials. If the relationship between patient 

characteristics, MSD, radiation dose and tumor control probability (TCP), is better 

understood, patients may be stratified more effectively by their risk following 

radiotherapy. As a result, trials can be powered more efficiently as comparing 

subgroups of patients at increased risk of local recurrence with those at reduced risk. 

Besides, applications of the more conformal radiation techniques become increasingly 

popular in BCT [9]. Managing the uncertainty on the MSD spread therefore becomes 

more important in treatment planning. There are, however, currently no models 

available that addressed these issues. Therefore, the aim of this study is to create 

statistical models that quantify the effectiveness of surgery and radiotherapy on MSD 

cell kills, and through a simulation framework to establish the relationship between MSD, 

radiation dose and TCP.  
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Material and Methods 

 

Overview 

We propose a Monte-Carlo simulation framework for analyzing the relationship between 

microscopic disease (MSD) and tumor control probability (TCP). We first present the 

pathology dataset of MSD load and spread distribution in the operated breasts, and 

then describe the outcome datasets of patient panel data that contain the TCP results 

with median 10 years follow-up. Finally, the simulation framework is explained in detail. 

 

Pathology Dataset 

One of the aims of the Multi-modality Analysis and Radiological Guidance IN breast-

conserving therapy study (MARGINS) was to chart the presence of MSD around the 

primary invasive breast cancer [10]. Patients in this study underwent additional and 

more extensive assessment of the pathology specimen. More than 1800 microscopic 

slides of invasive breast cancers in sixty patients were examined by two experienced 

breast cancer pathologists [11]. The MSD around the primary invasive tumor was 

observed on the microscopic slides. The disease load and the distance from the bulk of 

the tumor were recorded after the geometric reconstruction of the pathology slides [10].  

 

Outcome Datasets 

In the European Organization for Research and Treatment of Cancer (EORTC) 22881-

10882 (boost-versus-no-boost) trial [5], all patients underwent lumpectomy and auxiliary 

lymph node dissection followed by radiotherapy. After informed consent, patients after 

surgery were randomly assigned to receive whole breast irradiation (total dose of 50 Gy 

in 5 weeks with a dose per fraction of 2 Gy) with or without a boost of 16 Gy (2 Gy per 

fraction) on the tumor bed. The negative surgical margin width at pathology (minimal 

distance from specimen edge to tumor bulk) was measured for each patient in a subset 

of 1616 patients with central pathology review. 

 

The Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) centrally reviewed 

the randomized trials for early-stage breast cancer worldwide every five years since 
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1985. The sixth cycle data in 2011 consisted of 10801 women from 17 trials [12]. The 

pooled results from 4138 patients in the breast-conserving surgery-only arm were 

selected to determine the TCP without radiotherapy after primary surgery.  

 

Simulation Framework 

We designed a simulation framework to model the three following steps in breast 

conserving therapy: MSD load prediction, surgery and radiotherapy (Figure 1).  In the 

MSD load prediction step (Stage 1), we built a quantitative model to estimate the total 

cell number of MSD and the spread distribution from the sixty patients in the MARGINS 

dataset. In the surgery step (Stage 2), we built a geometrical model for the operated 

breast and estimated the remaining quantity of MSD after the primary surgery. In the 

radiotherapy step (Stage 3), the irradiation of residual MSD was modeled following 

three RT protocols which were used in the past clinical trials (surgery only, uniform dose 

50 Gy and uniform dose 50 Gy plus 16 Gy boost at the tumor bed). TCP was analyzed 

using an extended Webb-Nahum TCP model. We simulated ten thousand patients each 

time in our framework. In order to take into account uncertainties in outcome data, we 

repeated the simulations for fifty times. The resulting TCPs of the simulated patients 

were compared with the actual outcome data in the EORTC trial and the EBCTCG 

study. Consequently radiobiology parameters in the TCP model were optimized to 

minimize the difference between the simulation results and the clinical outcome results. 

 

MSD Load Prediction (Stage 1) 

The MSD load model (total cell number) was developed based on the pathology data 

and consisted of two components. The first component is a Zero-Inflated model for 

quantifying the MSD volume of patients [13]. We chose the Zero-Inflated model 

because a relatively large proportion of patients (17 out of 60) in the pathology study did 

not have microscopic disease around the invasive tumor. Hence, the fit by a simple 

linear regression model would be deteriorated by a large proportion of zeros. We 

considered three covariates in our model which include age at diagnosis, tumor 

histopathology grading (PA-Grade) and tumor diameter, because these covariates were 

previously recognized as the most influential factors that affect TCP in most randomized 
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trials [14]. We then applied the classical backwards selection method using the Akaike 

information criterion [15] to find the optimal combination of covariates. Note that MSD is 

occult at any breast imaging (ultrasonography, mammography and MRI). Hence, the 

estimated total MSD volume was only based on the pathology data. 

 

Figure 1: The flow chart of our simulation framework. The round modules represent the 

simulation steps; the square modules represent the statistics obtained from the outcome 

datasets; the round-cornered square modules represent the mathematical model 

derived from the pathology dataset; and the modules with dashed borders represent the 

model parameters obtained through this simulation framework.   

 

 

 

The second component of the total MSD load model was a Gaussian model of cell 

density. This cell density was estimated from a set of 36 digitized microscopy slides 



A Simulation Framework for Modeling Tumor Control Probability in Breast Conserving Therapy 

- 46 - 

 

selected from twelve patients (top seven oldest patients and top five youngest patients) 

using a special slide scanner and a cell-counting software (Aperio Technologies Inc., 

US [16]). The average and the standard deviation of the MSD cell density of these 

twelve patients were calculated and fitted in the Gaussian model. Finally, the total MSD 

load for each simulated patient was estimated as the product of her MSD volume and 

cell density [17]. 

 

We also quantified the MSD spread distribution around the invasive tumor as a function 

of distance to the edge of invasive tumor using a normalized term of MSD. This 

normalized term represents the ratio of the MSD load at each distance over the total 

MSD load for each patient. For example, if we only found 5*107 cells, 2*107 cells and 

3*107 cells at the distances of 1mm, 5mm and 10mm respectively from the nearest 

edge of the invasive tumor, the normalized ratios of this patient would be 0.5, 0.2 and 

0.3 at distances of 1mm, 5mm and 10mm and zeros at the other distances. We fitted 

the normalized ratios of each patient with a discretized truncated Gaussian model (at 

the distance of 1 mm, 2mm, etc., until 30 mm) and found that the means and standard 

deviations of these fitted truncated Gaussian models can be described with a negative 

binomial distribution and a Poisson distribution, respectively. To obtain a new spread 

distribution for a simulated patient, we generated a random number from the negative 

binomial distribution for the mean of the truncated Gaussian model and a random 

number from the Poisson distribution for the standard deviation of the truncated 

Gaussian model. Finally, we obtained all the thirty values of the normalized ratios from 

the truncated Gaussian model of this patient. This MSD spread distribution was used in 

the simulation of surgery in the next section. 

 

Surgery (Stage 2) 

In our simulation, it is assumed that the invasive tumor was always removed with 

surrounding normal tissue by surgery. The remaining MSD quantity after surgery was 

approximated as the difference between the total MSD load estimated in the first stage 

and the expected MSD load in the removed normal tissue. By simplifying the shape of 

the surgical resection specimen to an ellipsoid (Figure 2), the removed volume was 
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calculated based on the six surgical margins in three orthogonal directions. The surgical 

margin in each direction was usually anisotropic [10]. We first evaluated statistical 

models to describe the distribution of margins and then generated some simulated 

values for each patient as described below.  

 

Figure 2: Four surgical margins were measured from the slicing plane of macro-

pathology specimen and the other two surgical margins perpendicular to the slicing 

plane were approximated by the number of slices without invasive tumor.  

 

 

The minimal surgical resection margin (MinSRM) was subtracted from six surgical 

margins for twenty patients in the MARGINS dataset resulting in the ‘normalized’ 

margins. We then modeled the sum of two normalized margins in the opposite direction 

using the Poisson distribution. We chose the Poisson model based on experience of 

observation. The partition ratio of each normalized margin over the corresponding sum 

of two was fitted to a Beta-distribution model due to the characteristics of data.  

 

To obtain the six margins in each virtual patient, we first simulated the MinSRM of the 

virtual patients by adopting the fitted probability density of the MinSRM from the EORTC 

outcome dataset and then applied two above models to obtain the margin sums of three 
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orthogonal directions and the partition ratios of two directions (one margin is set to be 

the MinSRM which indicated zero for one partition ratio). With these data, we could 

calculate the remaining five margins besides MinSRM for each virtual patient. Finally, 

the volume of normal tissue within the ellipsoid around gross tumor was considered to 

be removed such that the expected MSD load after surgery was decreased 

correspondingly. 

 

Radiotherapy (Stage 3) 

We extended the Webb-Nahum TCP model [18] for our purposes. Specifically, we 

considered remaining MSD cell quantity as a variable among patients and separated 

the MSD cells into two categories: indolent cells and clonogenic cells. We considered 

that only clonogenic cells contribute to the risk of local recurrence and proposed a factor 

named clonogenic cell fraction (CCF), being the ratio of the number of clonogenic MSD 

cells over the number of total MSD cells. CCF was introduced to model the TCP for 

surgery only patients receiving 0 Gy dose. We tested the importance of introducing CCF 

into our TCP model by examining the null hypothesis that every MSD cell is clonogenic. 

The TCP formula can be written as 

 , 

where , , , , and  represent the remaining MSD volume after surgery, cell 

density, CCF, MSD radiosensitivity and prescribed dose, respectively. ,  and  

were the probability distribution function of the corresponding parameter, which 

represent the variation across the patient population. 

 

 

Model Parameters and Dose-TCP Relationship 

MSD volume, cell density and TCP were obtained from the pathology dataset and the 

outcome datasets. The radiosensitivity and CCF parameters were unknown and 

estimated through the proposed TCP model. Note that only three treatment results were 

considered, which include two traditional treatments (50 Gy & 66 Gy) in the EORTC 

dataset and breast conserving surgery (where we assumed patients received 0 Gy) in 
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the EBCTCG dataset. The parameter estimation problem was casted into a Bayesian 

simulation framework where the uncertainties on the TCP results of three treatments 

were taken into account [19]. In other words, we maximized the Gaussian likelihood 

function of the estimated TCP from simulated patients using the mean and the standard 

deviation of TCPs from the three corresponding treatments in the outcome datasets. We 

obtained the unknown parameters in two steps. First by setting the radiation dose to 

zero in the equation, we ruled out the effect of the radiosensitivity on TCP and obtained 

the estimate of the CCF after running our simulation framework for fifty times. Second 

we considered the CCF as a known variable in the equation and obtained the mean and 

standard deviation of the radiosensitivity in a similar manner. To estimate the 

relationship between radiation dose and TCP, we utilized the TCP model by varying the 

dose parameter in calculation. To account for the uncertainty of estimates, we randomly 

generated a hundred sets of parameters in the framework based on their distributions 

and obtained a correlation between the radiation dose and TCP for each set. The 

average and the confidence interval of these correlations were reported. 

 

Results 

 

MSD Load Prediction  

Only the baseline coefficients and the covariates of tumor grade remained significant in 

our zero-inflated model using the backwards selection method. The total microscopic 

disease (MSD) volume was positively associated with higher tumor grade (Table 1). For 

example, the patients with tumor grades I, II or III had average MSD volumes of 198 

mm3, 288 mm3 or 447 mm3, respectively. Besides, the probability of patients having no 

MSD extension decreased with higher tumor grade. The average MSD cell density was 

450000 cells/mm3 +/- 84000 cells/mm3 (1 SD). The fitted spread distribution model 

(Table 2) was compared with the observed data in Figure 3. 

 

Surgery 

We found that in the EORTC dataset a large proportion of these margins were scored at 

5 mm intervals, which might be caused by rounding effect introduced at pathology 



A Simulation Framework for Modeling Tumor Control Probability in Breast Conserving Therapy 

- 50 - 

 

(Figure 4). Therefore, we blurred the sampling of the biased observation (every 5 mm) 

with a simple Gaussian model (SD = 2). We obtained the parameters in the surgery 

simulation and their corresponding 95% confidence intervals (Table 2). Based on this 

simulation method, we found that the average quantity of MSD per patient decreased 

from 104000000 cells before surgery to 13000000 cells after surgery such that 12.5% of 

the total MSD cells remained after surgery. This fraction varied between patients from 0 

to 100% with a large standard deviation as large as 17.2%, which indicates a large 

range of outcomes for surgery performance and the high risk of omitting radiotherapy. 

 

Table 1: Regression results in the MSD load prediction model. 

Geometric model coefficients :  

 Estimate Std. Error P-value 

(Intercept) 3.524 0.407 < 0.001 

Histopathology Grade 0.406 0.197 0.0391 

Zero-inflated part coefficients:  

 Estimate Std. Error P-value 

(Intercept) 1.732 0.937   0.0645 

Histopathology Grade -1.886 0.696  0.0068 

 

Table 2: The estimated parameters in our simulation framework. The negative binomial 

model and the first Poisson model are used in the MSD spread model in the first stage. 

The Beta model and the second Poisson model are used in the surgery simulation in 

the second stage. CCF and the mean and the standard deviation of radiosensitivity are 

used in the TCP model in the third stage.  

 Estimate 95% Confidence Interval 

Negative Binomial  Mu 5.64 4.38 ~ 6.90 

Scale 2.72 1.06 ~ 4.38 

Poisson (Spread) 2.59 2.11 ~ 3.07 

Poisson (Margin) 17.37 16.31 ~ 18.42 

Beta (symmetric) 1.477 1.010 ~ 1.944 
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CCF  3.66*10-7 1.89*10-7~ 5.43*10-7 

Radiosensitivity mean 0.067 0.060 ~ 0.074 

Radiosensitivity sd. 0.022 0.013 ~ 0.030 

 

Figure 3: The means and the standard deviations of the normalized MSD load ratios 

(the percentage of the MSD load at each distance over the total MSD load per patient) 

in the pathology dataset and the fitted model. The dot points represent the mean of 

ratios for sixty patients in the pathology dataset and the triangle points represent the 

mean of ratios estimated from the truncated Gaussian model. The error bars represent 

one standard deviation of data at each distance. 
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Figure 4: (Left) The probability density distribution of minimum surgical margin in the 

EORTC dataset. The biased observation on every five millimeter interval is 

compensated by a diffused sampling strategy with a standard Gaussian model. (Right) 

The probability density distribution of the partition ratios as the normalized surgical 

margin over the sum of two in the opposite direction. The original data is fitted to a 

Gaussian model and a Beta model. We chose to use the Beta model for further analysis 

in the following sections.  

 

 

Radiotherapy 

The estimated clonogenic cell fraction (CCF) and radiosensitivity parameters are shown 

in Table 2. The null hypothesis of ignoring CCF was rejected at 1% level of significance, 

which indicates the importance to know that only a small fraction of MSD cells are 

clonogenic. Using these estimated parameters, we obtained the quantitative relationship 

between radiation dose and the predicted TCP at 10 years (Figure 5). We observed that 

the TCP is increased with the increased prescription dose; however we cannot reach 

100% TCP even with 100 Gy as the model predicted. We also observed that the 

uncertainty of the outcomes decreases with the increased prescription dose. 

 

Figure 5: The obtained relationship between radiation dose and TCP which were 

estimated with a hundred groups of framework parameters. The black curve represents 

the mean of the estimates and the shade area represents the 95% confidence interval. 
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The dot points represent the true clinical data with the 95% confidence interval on the 

top of them. 

 

Discussion 

 

Our proposed framework for simulating breast conserving therapy established the 

relationship between microscopic disease (MSD), surgical margin, radiation dose and 

tumor control probability through a quantitative model. To analyze MSD quantity in each 

treatment stage, we modeled the quantity and the spread distribution and simulated the 

effect of quantity change by surgery and radiotherapy. Clonogenic cell fraction and 

radiosensitivity parameters in our TCP model were estimated through comparing the 

simulation results with the true observations from the clinical trials. Finally, we obtained 

the quantitative relationship between radiation dose and tumor control probability. 

 

Most previous studies on the risk of local recurrence after breast conserving therapy are 

based on the regression analysis of outcome data observed through clinical randomized 



A Simulation Framework for Modeling Tumor Control Probability in Breast Conserving Therapy 

- 54 - 

 

trials [20]. Various clinical and histopathologic factors, immunohistochemical markers 

and molecular subtypes have been applied as prognosticators. Some are referred to as 

therapy predictors, since they allow the oncologists the choice of a specific therapy [21]. 

However, heterogeneity in outcome exists even when patients have the same predictors 

[4]. Hence, a Monte-Carlo simulation framework may be more suitable for TCP 

modeling because the analysis is tailored to individual patient characteristics.  

 

Our modeling framework considers the MSD quantity and change thereof before and 

after breast conserving surgery and radiotherapy. It explains the risk of local recurrence 

from MSD quantity and cell kills. Prediction of remaining microscopic disease volume 

after primary surgery for individual patient has been attempted before [22], however, it 

proved inaccurate in other datasets [23]. Hence, we applied a stochastic model in 

predicting the MSD quantity and carefully utilized it on a population-based simulation. 

The inaccuracy of individual prediction is improved by modeling group variance. In 

addition to the MSD quantity, the spread distribution of MSD also plays a significant role 

in the risk model [24]. The MSD spread was previously modeled with exponential 

distribution [25] or half Gaussian [24]. Similarly, we chose to use the truncated 

Gaussian model with normalized ratios so that MSD quantity is disassociated with MSD 

spread. Previously, patients were selected for accelerated partial breast irradiation 

based on the risk of local recurrence [26]. However, the treatment plans could not be 

optimized further due to the lack of knowledge about the MSD spread distribution. Our 

framework provides the feasibility to optimize TCP to a population-based MSD spread 

distribution with inhomogeneous dose. For instance, with different surgical margins, the 

MSD spread distribution of patients may differ considerably. The radiation dose may be 

optimized for the different distributions. 

 

For predicting the total volume of microscopic disease in breast patients, we only chose 

to use the histopathology grade of tumor rather than patient age and the diameter of 

tumor, because the limited number of patients in our pathology data did not provide 

sufficient statistical power to consider all three factors simultaneously in our prediction 

model. We therefore applied the backward selection method to choose the best 
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candidates from these three factors. Also, some strong correlations between patient age, 

histopathology grade and tumor diameter were found previously [27].  

 

Tumor control probability models for breast cancer have been studied extensively [28]. 

However, consensus on the values of radiosensitivity for cancerous cell has not yet 

been reached. Guerrero et al. analyzed three clinical studies and obtained a plausible 

set of radiobiological parameters with  = 0.3 Gy-1,  = 10 Gy [29]. A more recent 

study [30] showed that  ratio should be much lower based on the result of the 

retrospective analysis on different fractionation scheme of ten randomized trials. In their 

paper [30], they found  is a much smaller value (0.08 Gy-1) and   is equal to 3.89 

Gy. The reason for the smaller  can be that only a small proportion of MSD cells are 

clonogenic [31]. In our study, we also obtained a small  (0.067 Gy-1) in the Webb-

Nahum TCP model, however we should point out our  is the sum of LQ and 2 x LQ 

in the standard linear-quadratic model. Assuming  = 3.89 Gy, we find an LQ is 

equal to 0.044 and comparable to the result in [30].  

 

Breast conserving therapy is a combination treatment based on the collaborative effort 

from surgery, pathology, radiotherapy and medical oncology. However, the information 

transition is often limited between each department; therefore the treatment outcome 

could not be optimized further within the structure of the individual department. For 

instance, the width of negative surgical margins were not used in the planning step of 

radiotherapy and the whole breast was irradiated to compromise the outcome 

uncertainty as the consequence [17]. Our study indicates that even if a very large dose 

such as 100 Gy is given to the whole breast of patients, the tumor control probability at 

10 years will not reach 100% within the current clinical treatment setting. It indicates that 

the optimization should be performed at the hospital level instead of the department 

level as the current situation. Our framework therefore can be applied as the foundation 

of the simulation for the changes in the treatment settings.  
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Several limitations of our study should be mentioned. First, despite complete 

embedding of the resection specimens, it was likely that the MSD was still under-

sampled at pathology. The resection specimens were first sliced macroscopically with 4 

mm interval and then further trimmed and examined on microscopic slices with 4 um 

thickness. To account for this issue, we performed a robustness test in which we varied 

the MSD quantity by a scaling factor applied to the original sixty patient data in the 

MARGIN dataset. We found that the relationship between radiation dose and TCP was 

not affected by this scaling factor. Conversely, CCF was linearly dependent on this 

change. This can be explained by the fact that the baseline TCP (0 Gy) is only affected 

with CCF when the RT dose is set to zero in Equation (2). This result illustrates that the 

undersampling issue at pathology did not deteriorate the accuracy of the estimated 

dose-response relationship in our framework. 

 

Second, the adjuvant therapy was more frequently used to treat patients and our 

framework does not include the effect of chemotherapy or hormone therapy. However, 

to the best of our knowledge, this work is the first one that attempts to model the local 

procedures in the breast conserving therapy in a quantitative manner. To correct for the 

impact of systemic treatment on local control after BCT, one may approximate the 

answer by multiplying the local recurrence risk with a correction factor of 0.5, if adjuvant 

therapy was used. As it is well demonstrated both Tamoxifen and chemotherapy 

reduces the local recurrence risk after BCT by half, as seen for example in the complete 

data of the boost-versus-no-boost trial of 5318 patients [14].  

 

Third, we assumed that the disease spread observed in the MARGINS dataset was 

comparable to that in the EORTC dataset and the EBCTCG dataset. Fourth, we 

assumed the EBCTCG dataset has similar minimal surgical margins as the EORTC 

dataset. Fifth, the microscopic cell density was estimated from only 12 patients. Finally, 

we assumed that all MSD cells received the prescribed dose, ignoring dose 

heterogeneity and setup errors.  
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Conclusion 

 

The effectiveness of surgery and radiotherapy on microscopic disease cell kills was 

quantified with our statistical models. The relationship between microscopic disease, 

radiation dose and tumor control probability was established through the simulation 

framework.  
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Abstract  

 

Background and Propose 

Age is an important prognostic marker of patient outcome after breast conserving 

therapy; however, it is not clear how age affects the outcome. This study aimed to 

explore the relationship between age with the cell quantity and the radiosensitivity of 

microscopic disease (MSD) in relation to treatment outcome. 

 

Materials and Methods 

We employed a treatment simulation framework which contains mathematic models for 

describing the load and spread of MSD based on a retrospective cohort of breast 

pathology specimens, a surgery simulation model for estimating the remaining MSD 

quantity and a tumor control probability model for predicting the risk of local recurrence 

following radiotherapy.  

 

Results 

The average MSD cell quantities around the primary tumor in younger (age≤50 years) 

and older patients were estimated at 1.9*108 cells and 8.4*107 cells, respectively 

(P<0.01). Following surgical simulation, these numbers decreased to 2.0*107 cells and 

1.3*107 cells (P<0.01). Younger patients had smaller average surgical resection volume 

(118.9 cm3) than older patients (162.9 cm3, P<0.01) but larger estimated radiosensitivity 

of MSD cells (0.111Gy-1 versus 0.071Gy-1, P<0.01). 

 

Conclusion 

The higher local recurrence rate in younger patients could be explained by larger 

clonogenic microscopic disease cell quantity, even though the microscopic disease cells 

were found to be more radiosensitive. 
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Introduction 

 

For many women with early-stage breast cancer, breast conserving therapy (BCT) has 

become a favorable option due to the comparable survival rates as those after 

mastectomy and better cosmetic outcome [1]. Despite the good results of BCT, younger 

patients (age≤50) are still at increased risk of breast cancer recurrence compared with 

older patients [2,3]. Underlying this observation may be differences in tumor biology [4], 

adjuvant systemic therapy [5], and margin status [6]. Indeed, young patient age is 

associated with increased risk of positive resection margins [7]. One possible 

explanation may be larger disease load in younger patients [6], although this hypothesis 

has not been investigated in detailed pathology studies.  

 

The correlation between tumor control and age were studied previously. In 1994, Nixon 

reported a higher frequency of adverse pathological factors (necrosis, pathology grade, 

etc. ) seen in patients under 35 years of age [8].  Zhou studied 130 patients under age 

40, supported the previous result and argued that the majority of the breast excisions 

should be performed with careful evaluation of microscopic margin status [9]. However, 

very few studies to date have examined the combined effect of surgical margins and 

age on local control rates.  

 

In this study, we focused on the potential role of pathology and radiobiology differences 

to explain differences in treatment local control between younger and older patients. For 

this purpose we employed a previously developed treatment simulation framework [10] 

to model the treatment outcome. We aimed specifically at answering three questions: 

(1) Does age affect the quantity of microscopic tumor cells? 

(2) Dose age affect the radiosensitivity of these tumor cells? 

(3) Which factor, if any, plays a more important role, quantity or radiosensitivity? 
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Material and Methods 

 

Overview 

In order to study the effect of patient age on the outcome of breast conserving therapy 

(BCT), we deployed a retrospective analysis of patients in two different age groups: 

patients at age 50 years or below, and patients older than 50 years [3]. The effect on 

the treatment local control was analyzed by tracking the change in microscopic disease 

(MSD) quantity around the primary tumor after each treatment component through an 

earlier developed simulation framework [10]. In short, this framework contains three 

sequential stages: disease load prediction, surgery simulation and radiotherapy (RT) 

modeling. MSD quantity and spread distribution was first estimated using a patient 

model derived from a retrospective cohort of pathology data. The simulated surgery was 

performed and the remaining MSD quantity was quantified using typical surgical 

resection margins. The tumor control probability (TCP) was estimated using an 

extended Webb-Nahum model and compared with local control in separate datasets. In 

the following subsections, we first describe the pathology dataset and the outcome 

datasets, and then explain how the simulation framework was employed to model the 

effect of age on TCP.  

 

Pathology Dataset 

We used the pathology data from the MARGINS (Multi-modality Analysis and 

Radiological Guidance IN breast-conServing therapy) study to model the MSD quantity 

and spread distribution in the breasts of patients with early breast cancer eligible for 

breast conserving therapy [11]. More than 1800 microscopic slides of invasive breast 

cancers in 60 patients (48 patients with age>50 and 12 with age≤50) were examined by 

two experienced breast cancer pathologists [12,13]. MSD was observed on the 

microscopic slides. The disease quantity and distance from the primary tumor were 

recorded after slice three-dimension reconstruction. The MSD cell densities were 

estimated using a nuclei counting software on digitalized microscopic slides [14].  
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Outcome Datasets 

In the EORTC (European Organization for Research and Treatment of Cancer) 22881-

10882 (boost-versus-no-boost) trial [15], a subset of 1616 patients with central 

pathology review showed that an increased risk of local recurrence was associated with 

age younger than 50 years and omission of a boost dose of 16 Gy to the tumor bed [16]. 

We accordingly separated our data into four groups to calculate the local control rates. 

These four groups were younger patients (≤50 years) with and without a boost, and 

older patients (>50 years) with and without a boost. 

 

In addition to the EORTC trial data, we used data from the EBCTCG (Early Breast 

Cancer Trialists’ Collaborative Group), who centrally reviewed the randomized trials 

performed world-wide in early breast cancer every five years since 1985. The sixth 

cycle data in 2011 consists of 10801 women from 17 trials [17]. The reported result of 

4138 pooled patients who only received breast conserving surgery (BCS) (i.e., no RT) 

was selected to determine the baseline values in the two age groups at 0 Gy dose.  

 

Disease Load Prediction  

To model disease quantity as a function of age, a Zero-Inflated Model was employed 

[10]. To estimate disease cell density, we selected 36 pathology slides from the five 

youngest patients and the seven oldest patients and analyzed the difference between 

these two groups. The cell density data in the two age groups were fitted separately to a 

Gaussian model. 

 

The MSD spread model was described as disease quantity within each 1 mm distance 

from the edge of the macroscopic tumor relative to the total quantity recorded for each 

patient. The MSD spread distribution (thirty relative ratios) of each patient was modeled 

with a truncated Gaussian distribution independently. The mean and the standard 

deviation of these truncated Gaussian models were described with a negative binomial 

distribution and a Poisson distribution, respectively. The mean of the Gaussian model 

describes the center of disease load and the standard deviation parameter of the 
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Gaussian model indicates how wide the distribution of tumor cells was. The parameters 

of the spread model were compared using Student-t tests between two groups. 

 

Surgery Simulation 

The remaining MSD in the operated breast was estimated as the difference between the 

total MSD quantity and that within the volume of the tissue removed together with the 

macroscopic tumor. It was previously reported that younger patients have a larger 

probability of smaller excision volumes [18]. We compared the distribution of the 

negative surgical margins in the two age groups in the EORTC dataset using the 

Kolmogorov-Smirnov test and incorporated this difference in excision volumes between 

the two age groups within our surgery simulation module. As reported previously [10], 

the removed tissue around the primary tumor in the MARGINS dataset was estimated 

using the surgical margins in six directions. The sum of surgical margins minus minimal 

surgical resection margin was modeled with a Poisson distribution. The asymmetry in 

each direction was modeled with a Beta distribution. We compared the parameters of 

the Poisson model and the Beta model using Student-t tests. The similarity of the 

remaining MSD quantities between the two age groups was evaluated using the Mann-

Whitney U test because the estimated values did not follow a Gaussian distribution.  

 

Radiotherapy Modeling 

The estimated remaining MSD quantity after simulated surgery was taken as the input 

into the extended Webb-Nahum TCP model [19] to model the local control of 

radiotherapy. The unknown parameters in the TCP model (i.e., MSD radiosensitivity, 

clonogenic cell fraction1) were estimated by fitting the simulation results to the clinical 

outcome for three different treatments: uniform irradiation with 50 Gy, 50Gy plus 16 Gy 

boost and no radiation (i.e., 0 Gy). We defined the local control rate at median 10 year 

follow-up as the TCP of the patients. We then compared the clonogenic cell fraction 

(CCF) between the two groups of patients using Mann-Whitney U test as the estimated 

                                                 
1 Clonogenic cell is a cell that has the potential to proliferate and give rise to a colony of cells. We assume 
only a proportion of microscopic disease cells are clonogenic [19]. 
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values of CCF across patients do not follow a Gaussian distribution. We used Student-t 

tests for comparing the mean and standard deviation of radiosensitivity.  

 

Statistical Tests 

We ran all statistical tests on the open-source software R 2 . A Bayesian Inference 

framework was implemented with the software package ‘mcmc’ (Markov Chain Monte 

Carlo simulation). In order to quantify the statistical accuracy, we designed a framework 

to implement our simulations one-hundred times and ran the statistical tests one-

hundred times accordingly. We reported the combined p-value as the average of all p-

values times two with 1.0 as maximum [20]. The rejection of the null hypothesis for 

equivalence was reported at the 0.05 level of significance.   

 

Factors potentially associated with TCP 

To further study which patient/tumor/clinical factors underlie the inferior outcome of 

younger patients, we explored two scenarios in which we tested the impact of four 

factors on the dose-TCP relationship: total disease quantity before surgery, surgical 

effect (removed tissue volume and disease spread), clonogenic cell fraction, and 

radiosensitivity of tumor cells. In the first scenario, we estimated the dose-TCP 

relationship using the average parameter values over older and younger patients in 

three of the four factors while the remaining factor was set to the average of the two age 

groups separately. Consequently, the heterogeneity between patients was ignored and 

the effect of age on each of four specific factors was observed.  

 

In the second scenario, patient heterogeneity was taken into account. To that end, the 

heterogeneity with the combined population of older and younger patients was modeled 

for three out of four parameters while modeling the remaining parameter separately for 

the two age groups. Similarly, we compared the variation of dose-TCP relationship by 

age difference on each of four factors.  

 

                                                 
2
 www.r-project.org 
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For both scenarios and all four factors we estimated the dose-TCP relationships 

separately. The effect of age on TCP was analyzed by comparing the difference in TCP 

results between the younger and older groups with the varying radiation dose. 

 

Results 

 

Disease Load Prediction 

The total microscopic disease (MSD) volume was negatively associated with age 

(P=0.03) (Table 1). The probability of a patient having zero MSD increased with age but 

a significant difference between the two age groups was not observed. Therefore, we 

discarded the age term in the zero-inflated part of the model. As a result, younger 

patients had an estimated average (one standard deviation (SD)) MSD volume of 431 

(632) mm3 compared to MSD in older patients: 180 (241) mm3.  

 

Table 1: Regression parameters in Zero-inflated Geometric Model. The quantity was 

modeled with the Geometric distribution and a larger-proportion of zeroes was corrected 

with the Zero-inflation part of the model.  

Geometric model coefficients: 

 Estimate Std. Error P-value 

Intercept 4.09 0.18 <0.001 

Age≤50 0.77 0.35 0.028 

Zero-inflation model coefficients: 

Intercept -0.98 0.30 <0.001 

 

The average cell density of MSD in younger patients was measured at 4.8*105 

cells/mm3 (SD 5.9*104 cells/mm3) (N=5). In older patients, the average MSD cell 

density was 4.3*105 cells/mm3 (SD 9.5*104 cells/mm3) (N=7). No significant difference 

between cell densities was found between these two age groups. Therefore in the 

following sections we modeled the cell density using one single model. We took the 

average as 4.5*105 cells/mm3 and the standard deviation as 8.4*104 cells/mm3 from the 

twelve patients. 
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Regarding the distribution of disease spread, the mean and the standard deviation of 

the relative quantity ratios per shell are shown in Figure 1. We observed a larger tail in 

the distribution for older patients while the disease is more focused around the 

macroscopic tumor for younger patients. The results from the Student-t test showed that 

the parameters in the Negative Binomial distribution and the Poisson distribution of the 

spread model are significantly different between the two age groups (Table 2).  

 

Figure 1: Relative ratios of disease quantity (disease quantity in a shell over total 

disease quantity) as a function of distance to the edge of macroscopic tumor for both 

patient groups derived from pathology data. The circles represent the average and the 

error bars represents one standard deviation for each shell. 
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Surgery Simulation 

Significant difference in the negative surgical margin width was not found in the two age 

groups in the EORTC dataset (P=0.27). However, we found significant differences 

between margin widths of the specimen in the pathology dataset (Table 2). The average 

width of the surgical margin was 23.6 mm in the older age group, and 17.6 mm in the 

younger age group. We found that the removed volume of tissue was significantly 

smaller in younger patients than in older patients (P<0.01), while the average tumor 

diameter was slightly larger in younger patients (17.7 mm vs. 16.6 mm). Younger 

patients had 1.2*102 cm3 tissue removed on average (standard deviation: 1.1*102 cm3), 

ranging from 1.3 cm3 to 1.1*103 cm3 (a normal breast size is roughly between 1.7*102 

cm3 and 2.7*103 cm3 [21]). The average removed tissue volume in older patients was 

1.6*102 cm3 (standard deviation: 1.5*102 cm3), ranging from 1.1 cm3 to 1.5*103 cm3.  

 

Table 2: The estimated parameters from our simulation framework. The Negative 

Binomial model and the first Poisson model (Spread) are used in the MSD spread 

model in Disease Load Prediction. The Beta model and the second Poisson model 

(Margin) are used in Surgery Simulation. CCF and the mean and the standard deviation 

of radiosensitivity are used in the TCP model in Radiotherapy Modeling. (CI=Confidence 

Interval) 

 Patients ≤ 50 years Patients > 50 years Combined 

P-value 

Estimate 95% CI Estimate 95% CI  

Negative Binomial  

Mu 

3.92 [2.5 - 5.3] 6.87 [5.7 - 9.0] <0.001 

                              

Scale 

15.25 [1.5 - 95.2] 3.91 [3.0 - 4.9] 0.576 

Poisson (Spread) 2.67 [2.1 - 3.4] 3.32 [2.8 - 4.0] 0.013 

Poisson (Margin) 12.23 [11.3 - 

13.9] 

17.85 [16.9 - 18.9] <0.001 

Beta (symmetric) 1.97 [1.3 - 2.6] 1.34 [1.1 - 1.7] <0.001 

Clonogenic Cell 1.86*10-5 [4.3*10-7 -  2.57*10-7 [0.5*10-7 - <0.001 
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Fraction  8.5*10-5] 4.8*10-7] 

Radiosensitivity 

mean (Gy-1) 

.111 [.091 -

 .132] 

.071 [.050 - .091] <0.001 

Radiosensitivity 

s.d. (Gy-1) 

.037 [.030 -

 .044] 

.018 [.012 - .023] <0.001 

 

After simulated surgery, younger patients had significantly larger quantity of MSD 

remaining in the breast (P<0.01). The average MSD quantity in younger patients was 

decreased from 1.9*108 cells to 2.0*107 cells. The percentage of the remaining MSD 

quantity over the original MSD quantity for younger patients ranged from 0 to 100% with 

a mean (1SD) of 10.4 (18.1)%. The average MSD quantity in older patients was 

decreased from 8.4*107 cells to 1.3*107 cells by surgery. The mean (1SD) percentage of 

reduction was 16.4 (25.1) %, range 0%-100%.  

 

Radiotherapy Modeling 

The tumor control probabilities in the two age groups in the EORTC boost-versus-no-

boost trial and the EBCTCG collective study are listed in Table 3. Note that the average 

TCP in the EORTC study is larger than the average TCP in the EBCTCG study, but falls 

into the 95% confidence interval of the EBCTCG study [17]. We took the TCP outcome 

at 10 years in the breast conserving surgery (BCS) arm only in the EBCTCG dataset 

and the 50 Gy and 66 Gy radiotherapy arm in the EORTC dataset. We estimated the 

clonogenic cell fractions for younger and older patients to be one in 5.2*104 cells and 

one in 3.7*106 cells respectively (P<0.001; Table 2). The mean radiosensitivity in the 

younger age group was estimated at 0.111 Gy-1, and in the older age group at 0.071 

Gy-1 (P<0.001). The standard deviations were 0.037 Gy-1 in the younger age group and 

0.018 Gy-1 in the older age group (P<0.001).   
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Table 3: The TCP outcome of patients with an median 10 year follow-up in the 

EBCTCG dataset [17] and the EORTC dataset [15]. (BCS=Breast Conserving Therapy, 

RT=Radiation Therapy, CI=Confidence Interval) 

Outcome TCP                     BCS only3 BCS + RT 50Gy BCS + RT 66Gy 

Age ≤ 50 years 52% 78.9% 89.9% 

95% CI [47% - 56%] [73.9% - 83.5%] [86.2% - 93.1%] 

# Patients 932 273 296 

Age > 50 years 69% 92.5% 95.6% 

95% CI [67% - 72%] [90.1% - 94.6%] [93.6% - 97.2%] 

# Patients 3206 528 519 

 

With the above estimated model parameters, we obtained the relationship between 

radiation dose and TCP (Figure 2). These two dose-TCP curves for the two age groups 

had different slopes. In the younger patient group, a higher absolute increase of TCP 

with the same increase of radiation dose was observed, but the starting point (TCP after 

breast conserving surgery only) was significantly lower. 

 

Figure 2: The relationship between radiation dose and TCP in the different age groups. 

The shaded areas indicate the 95% confidence interval of the estimates. The error bars 

represent the reported clinical outcome from the EORTC and the EBCTCG studies. 

                                                 
3
 In EBCTCG study, patients were separated into five categories by age. We took the first two categories as the 

younger patients and the other as the older patients. 
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Factors potentially associated with TCP 

Comparison of the impact of four factors on TCP for the first scenario is illustrated in 

Figure 3. It was observed that total disease quantity and clonogenic cell fraction play an 

important role in explaining the inferior outcome of younger patients while surgery and 

the radiotherapy have more positive impact on younger patients. Note that by modeling 

that every patient had the same amount of non-zero residual clonogenic cells, the dose-

respond curve starts at zero TCP at zero dose.  

 

In the second scenario, including realistic patient heterogeneity, we obtained a similar 

result as for the first scenario but with smaller differences between two groups (Figure 
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4). The TCP difference by age for these four factors is shown in Figure 5. We found the 

difference in TCP was increasing with increasing dose for radiosensitivity to reach a 

maximum at 59 Gy. Differences in surgery had little impact on the TCP and were mostly 

compensated by large radiation dose. Total MSD quantity of younger patients had a 

negative impact on TCP and this impact was gradually reduced by increasing dose after 

23 Gy. The clonogenic cell fraction was the most important factor we may use to explain 

the difference in TCP between younger and older patients.   

 

Figure 3: The dose-TCP relationship curves for younger and older patients stratified for 

different factors that affect TCP in the first scenario. The dash curve represents the 

result for younger patients; the solid curve represents the result for older patients. 
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Figure 4: The dose-TCP relationship curves for younger and older patients stratified for 

different factors that affect TCP in the second scenario. The dash curve represents the 

result of younger patients; the solid curve represents the result of older patients. 
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Figure 5: The TCP difference curves as a function of radiation doses for the four factors 

impacting treatment outcome between the two age groups. Total MSD quantity (solid), 

surgery effect (dash), clonogenic cell fraction (dot) and radiosensitivity (dash-dot). 
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Discussion 

 

This study aimed to explain the effect of age on the tumor control probability (TCP) in 

patients undergoing breast conserving therapy (BCT) for early-stage breast cancer. To 

pursue this goal, we used a simulation framework which contains mathematic models 

for describing the load and spread of microscopic disease (MSD) based on a 

retrospective cohort of breast pathology specimens, a surgery simulation model for 

estimating the remaining disease quantity and a TCP model for predicting the risk of 

local recurrence. The results indicated that the inferior outcome in younger patients may 

be explained by larger total MSD quantity and larger clonogenic cell fraction (CCF), 

even though MSD cells in the younger patients are more radiosensitive.  

 

An overview of clinical trial data has shown that breast conserving surgery (BCS) should 

be followed by radiotherapy to achieve results comparable with mastectomy in terms of 

recurrence and survival [3]. However, the value of radiotherapy (RT) after BCS in older 

breast cancer patients is still subject of debate [3,22]. In the current clinical setting, over 

60% of breast cancer patients are diagnosed at the age above 50 years. The treatments 

of these older patients vary and the outcome differ [23]. For some older women, breast 

conserving surgery without radiation may be used to minimize potential treatment-

related complications [24]. Gruenberger et al. suggested that radiation may be safely 

omitted for low-risk tumors in women over age 60 years [22]. Unfortunately, different 

results were reported by the Harvard 2006 pilot study [25] and the Italian randomized 

trial [26]. Consequently, these lead to the conclusion that the omission of RT should be 

considered carefully in subgroups of patients. However, this goal was not 

straightforward due to the lack of knowledge on the correlation between radiation dose 

and TCP. This study pursued to fill in this research blank and provided a quantified 

relationship between radiation dose, MSD and TCP for the older patients.  

 

On the same note, several studies reported that younger breast cancer patients had 

inferior outcome than older patients [2,27,28]. The EORTC boost-versus-no-boost trial 

showed that local recurrence was strongly correlated with age. Although there was a 
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statistically significant benefit to the boost in all age groups, the absolute benefit was 

higher for younger women. A randomized phase III trial [29] was initiated in 2005 to 

investigate the potential benefit of an additional 10 Gy dose to the tumor bed in younger 

patients in addition to a uniform 50 Gy dose and a standard boost 16 Gy. The 10 year 

local recurrence results have not been reported yet. Using our simulation framework for 

younger patients, we predict that the TCP at 10 years will increase from 81.8% to 89.8% 

by a standard boost of 16 Gy and further to 91.9% (95% CI: 89.2%~94.6%) using a 

standard boost plus the additional 10 Gy with the same eligibility criteria for adjuvant 

chemotherapy / hormone therapy as the EORTC boost-verse-no-boost trial. Note that 

the local recurrence rate of the total cohort in the young boost trial [29] shall be better 

than our prediction on this patient-matched case, because more patients in the young 

boost trial received the adjuvant systemic therapy and benefited from many 

improvements in the treatment technology. These issues are discussed in the following 

sections. 

 

In previous work [10], the total MSD quantity was considered as a function of age at 

diagnosis, tumor grade and tumor diameter, and the function parameters were 

estimated using the pathology dataset. In the current study, the effect of age on 

treatment outcome was the major focus; therefore, we only chose age to establish a link 

with the patient’s disease quantity. The younger patients had significantly larger quantity 

of disease than older patients both before and after surgery. This finding supports the 

necessity of an additional radiation dose in younger patients. 

 

Different from the previous research paper [33], we treated the age parameter as a 

discrete variable instead of a continuous variable. The advantage of separating patients 

into two groups is that we can deploy a structural modeling approach for analyzing the 

correlation between the histopathology characteristics of tumors and the outcome of the 

trials. Clearly, our study approach has the predictive ability on the local recurrence rate 

in a new trial with varying radiation doses. A similar prediction is impossible to obtain in 

a regression-form analysis. So far, to the best of our knowledge, no similar study exists 

that provides a predictive modeling platform.  
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The radiosensitivity in younger patients was estimated to be larger on average than that 

in the older patients, which may explain the larger absolute TCP benefit of the boost 

dose in the younger age group [15]. Moreover, the analyses of factors that may affect 

TCP suggest that clonogenic MSD cell quantity plays a more important role on the TCP 

than radiosensitivity. A large research focus exists world-wide on genomic profiling and 

experimental study to understand the radiobiology of breast cancer [4,30,31], but very 

few studies address the prediction of tumor cell quantity [32]. We recommend that 

additional effort should be spent on predicting tumor cell quantity (e.g., building 

mathematic models to predict microscopic disease extension using multiple imaging 

modalities [13]) in order to design effective treatment plans for high-risk subgroup 

patients. 

 

Due to the nature of a retrospective study, our analysis is only based on the simulations 

using the cohorts, which consist of the treatments of surgery and radiotherapy. Adjuvant 

therapy is frequently used to treat patients while our framework does not include the 

effect of chemotherapy or hormone therapy. As has been well demonstrated, both 

Tamoxifen and chemotherapy reduce the risk of local recurrence by half, seen for 

example in the complete data of the boost-versus-no-boost trial of 5318 patients [33]. 

To incorporate systemic treatment in our framework, one may thus approximate the 

local recurrence risk with a correction factor of 0.5 when adjuvant therapy is given, 

however, should be also always cautious on the interaction between different types of 

treatments. 

 

Several limitations of our study should be mentioned. First, we split our cohort data by 

age into only two groups due to the limitation of a small number of younger patients 

(N=12) in our completely embedding pathology dataset. Menopausal status or other age 

related factors (e.g. ER receptor) may also play an important role on the local 

recurrence rate which unfortunately could not be investigated using the current datasets 

of this study. However, the analysis can be easily empowered with a larger pathology 

dataset for the desired factors. Second, the higher recurrence risk of breast cancer 
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patients was observed in our study than those in other recent studies. Possible 

explanations for the lower rate in new trials are better preoperative staging imaging 

procedures, use of image-guided surgery with pathological assessment of the margins, 

optimized radiotherapy with 3D treatment planning, and more widespread use of 

effective adjuvant systemic treatment [34]. Third, under-sampling may have occurred in 

the estimated microscopic disease quantity data. The resection specimens were first 

sliced macroscopically in 4 mm slabs, and then further trimmed and examined on 

microscopic slices of 4 um thickness. To increase the robustness of the estimation, we 

proposed to use statistical models and a simulation framework to account for the 

uncertainties in data. Fourth, we generalized the disease spread from the pathology 

data in our own institute (N=60) to the patients enrolled in the multi-institutional clinical 

trials based on the assumption that the patient groups have comparable characteristics. 

We believed this was a valid assumption because all patients in the pathology study 

received BCT. Fifth, the microscopic cell density was estimated from only 12 patients. 

No further data was analyzed because the likelihood to find a significant difference 

between younger and older patients is small due to the close average values and the 

large variation. Sixth, we assumed that all MSD cells received the prescribed dose, 

ignoring dose heterogeneity and setup errors.  
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Conclusion 

 

The microscopic disease quantity, impact of surgery, radiosensitivity and clonogenic cell 

fraction of breast cancer patients were studied and compared between two age groups. 

Inferior outcome of treatment in younger patients could be explained by the larger 

microscopic disease quantity and larger clonogenic cell fraction, even though the 

microscopic disease cells in younger patients were estimated to be more radiosensitive.  
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Abstract 
 

Background 

Residual microscopic disease is a major risk of local recurrence in breast-conserving 

therapy. Little knowledge, however, is available on the optimal radiation dose 

distribution in relation to this microscopic disease. Therefore we investigated the effect 

of inhomogeneous dose distribution on tumor control probability (TCP) taking into 

account inhomogeneously distributed tumor cells and setup errors.  

 

Method 

We used a simulation framework to analyze the outcome of breast-conserving therapy. 

First, we simulated the effect of surgery on the spatial distribution of microscopic 

disease. Second, we designed and simulated two dose planning scenarios with/without 

maximum-dose constraints, and calculated the effect on TCP. In each scenario, we 

tested three magnitudes of systematic and random geometric errors, and compared the 

TCP results under homogeneous dose plans (HDP) with the same mean dose. 

 

Result 

Surgery reduced the quantity of microscopic disease by about 87% but flattened the 

spatial distribution. The overall TCP was significantly improved by adopting dose-

painting plans compared to HDP. By aiming at 80% TCP on average 13.3% increase of 

TCP in the no-constraint scenario and 10.9% increase in the maximum-dose-constraint 

scenario were observed by inhomogeneous dose distributions. However, the 

improvement deteriorates with increasing target TCP and decreasing setup error. 

 

Conclusion 

Inhomogeneous dose distributions improve TCP but the improvement depends on 

target TCP and setup error.  
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Introduction 

Gross tumor volume (GTV)4, clinical target volume (CTV) and planning target volume 

(PTV) are well defined in the literature [1–3] and in radiotherapy guidelines [4]. The GTV 

comprises the region containing the macroscopic tumor, i.e., what can be seen, 

palpated or imaged; CTV represents the gross tumor volume plus a margin for sub-

clinical microscopic disease spread which therefore cannot be directly imaged; PTV 

adds a safety margin to the CTV to account for uncertainties in planning and treatment 

delivery, and is a geometric concept designed to ensure that the dose is actually 

delivered to the CTV. Not all of these volumes, however, are present in clinical practice. 

In early stage breast cancer, for example, the gross tumor is removed in breast-

conserving surgery (BCS). The GTV thus typically has zero volume, but the remaining 

breast might still contain residual microscopic disease (MSD) [5].  

 

Treating MSD is important but also complex [6]. Due to the risk of the extended spread 

of MSD, the whole breast has been irradiated for the past three decades [7,8]. The side 

effects include additional risk of fibrosis [9] and ischemic heart disease [10]. More 

recently, partial breast irradiation (PBI) has become a new option for treatment [11,12] 

with promising tumor control rates and low incidences of adverse effects [13]. These 

findings provide a rationale to further optimize the dose distribution in order to reduce 

the side effects to the organs at risk (e.g., the whole breast). Nonetheless, how to 

formulate the CTV in PBI and how to add PTV margins for geometric errors are still 

subject of debate. 

 

The spatial patterns of MSD from pathology studies were previously used to support the 

decision on defining the CTV [14]. However, it is unclear whether the CTV is defined in 

such a way that the MSD is optimally treated since a homogeneous dose is prescribed 

to the CTV. After all, MSD is sparsely and inhomogeneously distributed in the breast 

[15]. An additive CTV-PTV margin to obtain an adequate coverage in the presence of 

geometric uncertainties may not be a good choice because a quadratically combined 

                                                 
4

 Abbreviation list: gross tumor volume (GTV), clinical target volume (CTV), planning target volume (PTV), 

microscopic disease (MSD), tumor control probability (TCP). partial breast irradiation (PBI) , breast-conserving 
surgery (BCS), breast-conserving therapy (BCT), the Center of Mass (CoM). 
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CTV-PTV margin recipe can reduce radiation dose without compromising tumor control 

probability [16]. As an alternative approach, Witte et al. previously introduced a dose-

painting concept for dealing with the geometric uncertainties of MSD cells, in which the 

MSD cells were assumed to be homogeneously distributed [17]. The power of their 

study is that they developed a planning tool based on probabilistic optimization with 

inhomogeneous target dose while monitoring the confidence level on proper target 

coverage. In this study we aim to combine the above-mentioned different concepts to 

optimize dose-painting solution for the inhomogeneously distributed MSD while 

simultaneously accounting for setup errors (Figure 1). 

 

 

Figure 1: A schematic overview of the development of dose planning strategies. It also 

illustrates the correlation between this study and the previous studies. 
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Materials & Methods 

Study Overview 

We employed a previously developed framework [18] and adapted it to our specific goal 

in this study, which is to explore the optimal radiation dose distribution for the 

inhomogeneously distributed microscopic disease in the presence of geometric 

uncertainties. To that end, we simulated breast-conserving therapy with data obtained 

from multiple trials. This study consists of three steps: 1) we simulated the post-surgical 

microscopic disease distribution (MSD) of a large group of patients using data from a 

pathology study; 2) we designed an optimization algorithm based on tumor control 

probability (TCP) to obtain the ‘ideal’ inhomogeneous dose to eradicate 

inhomogeneously distributed disease, and introduced dose constraints to the planning 

problem; 3) we compared the TCP of the dose-painting plans with the TCP of the 

homogeneous dose plans. The details of this study are explained below. 

 

Disease Spread Analysis 

The pathology dataset in the MARGINS (Multi-modality Analysis and Radiological 

Guidance IN breast-conServing therapy) study [19] was employed to model the 

microscopic disease quantity and spread distribution. The MARGINS study included 

patients with early breast cancer who were eligible for breast conserving therapy. 

Population statistics of microscopic disease were derived from 1818 histopathology 

slides of 60 breast-cancer patients. The disease quantity and distance from the primary 

tumor edge were recorded after three-dimensional reconstruction [20]. The absolute 

quantity was previously fitted to a zero-inflated model and the spread distribution was 

modeled with a half-Gaussian distribution [18]. Due to the size of the excision 

specimens, the disease spread was available up to a distance of 30 mm, which is 

considered to be sufficient to cover the spread of microscopic disease [15,16]. 

 

To investigate the impact of breast-conserving surgery on the disease distribution, we 

compared the distribution of two surgical scenarios: 1) only the gross tumor is removed; 

and 2) the tumor is removed with a margin of surrounding normal tissue (a typical BCS 

[21]). To derive the disease distribution post-surgically, we simplified the complex 
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situation by assuming a unifocal spherical tumor [22] with different diameters (diameters 

extracted from a clinical trial [23]). The tumor was also surgically removed from the 

center of a half spherical breast of 14 cm diameter. Subsequently, the cavity caused by 

surgery was filled with the surrounding tissue, i.e., no seroma appeared after surgery. 

We will explain the impact of seroma in the discussion section.  

 

We first determined the distribution of MSD following the removal of the gross tumor 

only (i.e., the first scenario). We used the distance to the center of mass (CoM) of the 

gross tumor as the metrics to describe the distribution of MSD in breast. As stated 

above, we used a large sample of tumor diameters in a clinical trial from a comparable 

patient population [21] to infer the size of the tumors. We assumed the tissue with MSD 

to collapse isotropically towards the CoM and simulated the disease quantity and 

spread beyond the gross tumor with the disease spread model [18]. After we completed 

the simulation of the isotropic tissue-collapse process, we calculated the residual 

disease quantity and distribution relative to the CoM. 

 

To simulate the disease relocation in the second scenario (i.e., a typical BCS), we first 

obtained the surgical margins in our pathology data and combined with the obtained 

tumor sizes above to simulate the sizes of the surgically removed volume [18]. We 

simulated the disease distribution beyond the surgically removed volume and again 

calculated the disease quantity from the center after tissue collapses isotropically to the 

CoM.  

 

Optimized Dose Distribution 

We focused on the typical BCS scenario in the following sections. Given the disease 

spread distribution above, the optimal dose distribution was estimated iteratively in a 

simulation framework with a previously derived TCP model5 [18]. The overall TCP of the 

patient group was estimated as the average of the TCP of all patients. The TCP for 

each patient was estimated as the product of TCP in each cubic millimeter volume in 

                                                 
5 We considered the radiosensivity of tumor cells is following a normal distribution with mean 0.067 and 
one standard deviation 0.022 [18]. 
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breast. Note that due to the symmetric property6, we simplified the three-dimensional 

TCP model to a one-dimensional model for computational convenience as follows: 

𝑇𝐶𝑃𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑ (∏ 𝑇𝐶𝑃𝑑
𝑝

𝑑 )𝑝 𝑁⁄ , 

where 𝑑  (=1,2,…) represents the distance to the CoM of the gross tumor, 𝑝  is the 

ranked number of a patient in the patient population, and 𝑁 denotes the total number of 

patients. 

 

Two optimization scenarios were evaluated:  

1. Start from zero dose and add dose iteratively by 1 Gy at the radial distance 

(corresponds to the distance 𝑑) where it shows the maximal increment of TCP 

over the increment of the mean dose of organ at risk (i.e., a sphere with a radius 

of 50 mm to the CoM of the tumor).  

2. Same as above, however, with a constraint on the maximum prescribed dose 

(i.e., 66 Gy [23]). 

 

Setup errors play an important role in optimizing the dose in the treatment. To illustrate 

the effect of setup errors, we followed the methodology proposed in [16]. To account for 

the systematic error (Σ), we first sampled the disease spread for each simulated patient 

from the disease spread model [18]. Then we simulated a systematic error for each 

patient by randomly sample a distance and a direction in the polar coordinate system, 

and applied the sampled systematic error on the disease distribution of that patient 

assuming that the disease cells are uniformly distributed within the spherical shell of 

each distance to the CoM. Finally we summed the disease quantity following the 

transformed distribution for each distance to the CoM resulting in a 1D disease 

distribution that can be used in the TCP formula described above. 

 

Additionally, the effect of random errors () and beam penumbra was accounted for by 

blurring the dose distribution with another Gaussian kernel in the Cartesian coordinate 

system and then transformed into the polar coordinate system in the dose optimization 

                                                 
6 𝑇𝐶𝑃𝑝 = ∏ 𝑇𝐶𝑃𝑖,𝑗,𝑘

𝑝
𝑖,𝑗,𝑘 = ∏ 𝑇𝐶𝑃(𝑖,𝑗,𝑘) 𝑖𝑛 𝑑

𝑝
𝑑 = ∏ 𝑇𝐶𝑃𝑑

𝑝
𝑑  where 𝑖, 𝑗, 𝑘 are the indices of voxel in the Cartesian 

coordination and 𝑑 is the radial distance of the half spherical volume. 
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process. The penumbra was modeled with a SD=3.2 mm as documented in [24]. We 

designed 12 cases with different TCP goals, systematic and random errors for both 

optimization scenarios (Table 1).  

 

Table 1: Treatment plan scenarios and setup errors* 

  Σ==0mm 

(1SD) 

Σ==3mm 

(1SD) 

Σ==5mm 

(1SD) 

N
o

  

c
o

n
s
tr

a
in

t Targeting at 80% 

overall TCP  

N80-S0R0 N80-S3R3 N80-S5R5 

Targeting at 90% 

overall TCP  

N90-S0R0 N90-S3R3 N90-S5R5 

M
a
x
 d

o
s

e
 

c
o

n
s
tr

a
in

t Targeting at 80% 

overall TCP  

M80-S0R0 M80-S3R3 M80-S5R5 

Targeting at 90% 

overall TCP  

M90-S0R0 M90-S3R3 M90-S5R5 

H
o

m
o

-

g
e
n

e
o

u
s
 

D
o

s
e
 

Targeting at 80% 

overall TCP 

H80-S0R0 H80-S3R3 H80-S5R5 

Targeting at 90% 

overall TCP 

H90-S0R0 H90-S3R3 H90-S5R5 

*Σ(S): systematic error; (R): random error; N: Non-constraint scenario; M: Maximum-dose-

constraint scenario; H: Homogeneous dose scenario. 

 

In the optimization process, the disease spread distributions of 10000 virtual patients 

were randomly sampled from the disease spread distribution model per simulation, and 

resampled if the systematic error exists. The inhomogeneous dose distribution was 

optimized to reach a specified target TCP. We repeated the above simulation process 

49 times simultaneously and calculated the best outcome of the ratio of TCP increase 

over mean dose increase and the corresponding location for adding dose in each 

simulation. We took the location with the median of the 49 ratios as the step-wise dose 

increment in the optimization process. The optimization ceased if the target TCP was 

reached.  
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Homogeneous dose versus Dose-painting 

We compared homogeneous dose plans and dose-painting plans in terms of mean 

dose to the organ at risk and TCP outcomes. In order to compare with the existing 

literature [3,16,22], we defined the CTV as a spherical volume containing the 100% 

MSD from 90% of the patients. The planning target volume was obtained by adding a 

CTV-to-PTV margin of 2.5*Σ+0.7* to this CTV. In order to calculate the prescribed 

dose, we iteratively increased the dose homogeneously on each distance and finally 

satisfied the criterions that the target TCP is achieved and at least 95% of the PTV is 

covered (Table 1).  

 

Finally, we estimated the TCP benefit of applying the dose-painting plan over the 

homogeneous dose plan. We calculated the difference of the TCP results in the 

simulations of two types of plans under the constraint of the same mean dose to the 

organ at risk (i.e., breast). Other organs at risk such as lung and heart were ignored in 

this study for simplicity. However, avoiding side effects on lung and heart is important 

[25]. 
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Results 

 

Disease Spread Analysis 

The disease distributions in the ideal and realistic surgery scenarios were compared 

and shown in Figure 2. Note that the larger the tumor diameter, the further the spread of 

MSD in the coordinate system. The distance to the center of mass (CoM) can become 

larger than 30 mm. We observed that the spread of the disease quantity (the cumulative 

probability distribution of disease quantity) is more flattened in the realistic scenario than 

that in the ideal scenario. The quantity of microscopic disease after surgery (1.36*107 

cells). is reduced to 13% in a typical breast-conserving surgery case compared to the 

original disease quantity (1.04*108 cells). Conversely, the average cell density with the 

respect to the center of mass has a different distribution compared to that of cell 

quantity. Larger cell density is observed within a small distance. 

 

Figure 2: The simulated spatial disease distribution after the surgery in the two 

scenarios. (Upper) The solid curve (black) represents the disease quantity distribution in 

the case only the gross tumor is removed. The dashed curve (black) represents the 

disease quantity distribution in a typical BCS case where a surgical margin around the 

GTV is also removed. The grey curves denote the corresponding cumulative probability 

distributions. (Lower) The curves show the disease density distributions.  
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Optimized Dose Distribution 

We compared the impact of the systematic error (∑) on the post-surgical disease 

distribution of the patient population (Figure 3). We observed the distribution is shifting 

eccentrically and the maximum of average disease quantity decreases with increasing 

systematic error. Note that the volume of a spherical layer with a larger distance to CoM 

is larger than the volume of a layer with smaller distance to CoM. Consequently, the 

probability of MSD being relocating towards an outer spherical layer is higher than 

inward when the tissue with MSD is moving isotropically. 

 

Figure 3: The disease distribution in the patient group shifts eccentrically with the 

increasing systematic error. 

 

Considering no constraint (‘N’ cases) on the maximum dose (the first scenario), the 

optimal planned dose distributions are shown in Figure 4 for different TCP targets (i.e., 

80% and 90%). Assuming no systematic error or random error, the maximum doses of 

achieving 80% TCP and 90% TCP are 64 Gy and 98 Gy, respectively. The dose 

distribution is shifting eccentrically with increasing setup errors. We observed that a 

larger mean dose is needed to achieve a higher TCP objective (Table 2). 
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Figure 4: The optimal planned dose distributions with(‘M’)/without(‘N’) maximum dose 

constraint. The circle, star and square represent the cases with different setup errors. 

The solid lines represent the dose distributions for 90% TCP without maximum dose 

constraint (MDC); the dotted lines represent the dose distributions for 90% TCP with 

MDC; the dashed lines represent the planned dose for targeting TCP 80% with and 

without MDC, as the constraint is not reached. 

 

In the second scenario (with constraint), only the cases in which we targeted at 90% 

overall TCP were affected by the maximum dose constraint (Figure 4). For all these 

three cases (i.e., M90-S0R0, M90-S3R3, M90-S5R5), the dose is distributed more 

eccentrically than those in the non-constraint scenario. 

 

Homogeneous dose versus Dose-painting 

While targeting the 80% overall TCP with a prescribed homogeneous dose to the PTV, 

the optimization results ended up with different dose distribution (36 Gy, 33 Gy and 32 

Gy) for the three cases with different setup errors (Figure 5). The lower dose for larger 

setup errors indicates that the linear addition of CTV and PTV margins overestimates 

the impact of geometric uncertainties and can be partially compensated by a modest 

dose reduction. Similarly, different planned doses (65 Gy, 57 Gy and 56 Gy) were 
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required to target 90% TCP for 0 mm, 3 mm and 5mm systematic\random geometric 

uncertainties respectively. 

 

 

Figure 5: The homogeneous dose distribution with different setup errors. The circle, star 

and square represent three setup errors. The solid curves represent the delivered dose 

for targeting the overall TCP 90% and the dashed curves represent the delivered dose 

for targeting the overall TCP 80%. 

 

The mean doses in the different dose distribution plans (‘No Constraint’, ‘Maximum 

Dose Constraint’, ‘Homogeneous’) are listed in Table 2. We observed that the required 

mean dose is significantly higher to achieve greater overall TCP and to compensate for 

larger setup errors. Also, the mean doses of the ‘No Constraint’ plans are significantly 

lower than those of the homogeneous dose plans. We observed that the mean dose by 

applying the ‘Homogeneous’ plan is increased by about a factor of five of that from a no-

constraint inhomogeneous dose plan while targeting overall 80% TCP considering no 

setup errors. Similarly, the factor is about two for targeting overall 90% TCP. However, if 

both systematic and random errors increase to 5 mm, the above ratios increase to 12.6 

and 4.8, respectively. In addition, higher mean doses (on average: 44%) are needed to 
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achieve 90% TCP target in the maximum dose constraint scenario compared to the 

non-constraint scenario. 

 

Table 2: Relative mean dose to the breast for each scenario evaluated.  

 Non Constraint Maximum Dose  

Constraint 

Homogeneous Dose 

Target TCP: 

Setup Error 

80% 90% 80% 90% 80% 90% 

S0R0 100% 510.0% 100% 740.3% 555.2% 979.8% 

S3R3 140.5% 665.2% 140.5% 985.3% 1462.4% 2478.6% 

S5R5 181.1% 793.3% 181.1% 1112.4% 2291.9% 3859.2% 

 

In addition, we calculated the benefit of switching to the dose-painting plan from the 

homogeneous dose plan. We observed that if we restricted the same mean dose in 

three treatment plans, the TCP of the dose-painting plans are larger than those of the 

homogeneous dose plans (Figure 6). These results suggest that utilizing the disease 

distributions of a patient population, we can significantly improve overall TCP by 

adopting the dose-painting plan. By aiming at 80% TCP on average 13.3% increase of 

TCP in the no-constraint scenario and 10.9% increase in the maximum-dose-constraint 

scenario were observed. However, we also had two interesting observations: 1) the 

TCP benefit is reduced with increasing target TCP; 2) the TCP benefit is increased with 

increasing setup error. It indicates that the adoption of the dose-painting plan in breast 

conserving therapy should depend on target TCP and setup error. In addition, we also 

observed that to a certain high TCP target, the dose-painting plan becomes equivalent 

to the homogeneous dose plan because in both plans some tumor cells of particular 

patients may be not irradiated adequately (e.g., the maximum disease load in some 

spherical volume). The effect is more obvious in the ‘Maximum Dose Constraint’ 

scenarios as the benefit drops to zero where the target TCP is 96%. 
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Figure 6: TCP benefit of adopting dose-painting plans with the same mean dose as the 

homogeneous dose plans. The circle markers represent the no-constraint dose-painting 

plans and the square markers represent the dose-painting plans with maximum dose 

constraint. 
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Discussion 

A simulation study was conducted to investigate the optimal dose distribution for 

irradiating the residual microscopic disease after breast-conserving surgery. We found 

that the quantity of the microscopic disease is significantly reduced by 87% post-surgery. 

Moreover, the original half-Gaussian distribution of tumor cells, which is the basic 

assumption in many existing studies, is transformed to a log-normal-like distribution. It 

was observed that inhomogeneous dose distributions results in a significant increase in 

overall tumor control probability (TCP) for a given mean dose to the organ at risk in both 

the constraint and non-constraint scenarios. However, the benefit of dose-painting plan 

is decreasing by choosing a higher TCP target or smaller setup errors. 

 

Many methods to define breast CTV and PTV have been investigated [6,12,14], and the 

results were reported with excellent performance on local or regional control. A 

complete overview of the interaction between target volume definition, TCP and 

planning dose optimization, however, is lacking in the current literature. Many previous 

efforts with partial targets have been added to this research field. Buffa et al. analyzed 

the relationship between radiosensitivity and volume effects in the TCP modeling [26]; 

Carlone et al. explored the correlation between the parameters in a population TCP 

model and the heterogeneity of clonogenic cell distribution [27]; Strigari et al. developed 

a more patient specific three dimensional dosimetry method using functional MRI 

imaging [28]; Perrin et al. analyzed the radiobiological factors and optimized the 

treatment plan using PET images [29]; South et al. investigated the dose prescription 

complexity in biologically guided radiotherapy and pursued an ‘ideal’ dose prescription 

[30]; Jin et al. designed a treatment planning scheme which incorporates setup 

uncertainty and tumor cell density variation [22]; Witte et al. developed a probabilistic 

planning method with biological cost functions that does not require the definition of 

margins [31]. Most recently, Stroom et al. proposed a new method to combine the 

margins of CTV and PTV while accounting the disease spread from pathology [16]. Our 

study extends on Stroom’s basic concept and further includes the optimization part of 

treatment planning into the analysis.  
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Adopting inhomogeneous dose distribution becomes more and more popular owing to 

the technical improvement of multi-modality imaging and genetic profiling, and 

increased knowledge gained from the analysis of treatment outcome. The 

inhomogeneous dose distribution is well captured by the ‘dose painting’ concept [32] 

and quickly adopted in experimental practice [33,34]. Methodologies and tools have 

been developed for lung cancer and prostate cancer. For example, additional functional 

image modality such as PET is used to assist the delineation of the denser / 

radioresistant tumor cell regions. Conversely, for a breast cancer case the gross tumor 

is removed during breast conserving surgery. The residual microscopic disease is the 

major risk of local recurrence but impossible to image with current imaging technologies. 

Our study results indicate a significant increase in overall TCP with the same mean 

dose to the breast by adopting the inhomogeneous dose concept. However, the TCP 

benefit is reduced with increasing target TCP and with decreasing setup error which 

indicates that the adoption of a dose-painting plan should depend on target TCP and 

setup error in practice. 

 

Following most wide local excision procedures, tissue fluid enters the resulting cavity 

forming a seroma [6]. The distribution of microscopic disease will be impacted by the 

fluid volume. Moreover, the seroma volume decreases as time from surgery increases. 

In our current study, only the case without seroma was analyzed because of the lack of 

data with seroma to perform additional analysis. We expect, however, that the disease 

distribution will shift eccentrically in the presence of seroma compared to the non-

seroma case. Consequently, the dose distribution would shift eccentrically as well.  

 

Several limitations exist in our study. First, we generalized the disease distribution of 60 

patients in our pathology study to the overall breast cancer patients. Second, the 

maximum extent of the microscopic disease could only be measured up to 30 mm 

approximately; however the microscopic disease outside this range should not be 

neglected. Third, we only modeled setup errors. In practice, there are other sources of 

geometric uncertainties, such as delineation uncertainty, breathing motion, intra-fraction 

motion, etc. Most of these uncertainties will have similar effects as the setup errors 
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modeled in this study. Fourth, we used mean dose as a surrogate of normal tissue 

complication probability (NTCP). More refined NTCP models including also dose to 

other organs at risk such as lung and heart should be used in future studies. Fifth, the 

optimized dose distributions can currently not be delivered in the clinic. This likely 

includes the lower dose towards the center of mass. Sixth, we modeled surgery as the 

removal of a sphere. In practice, other surgical techniques than lumpectomy are used 

as well, removing for instance a cylinder of tissue. Seventh, adjuvant therapy like 

chemotherapy and hormone therapy are commonly seen in clinical trials, which may 

lead to the increase of radiosensitivity of tumor cells or other biological effects. We 

assumed a classical setup of breast conserving therapy (surgery plus radiotherapy) in 

our analysis framework. Last but not least, we did not model fractionation effects. 

Further experimental research should be carried out before the findings of this 

theoretical study can be applied in the clinic.   

 

 

Conclusion 

The quantity and the distribution of microscopic disease are affected by surgery. The 

overall tumor control probability of a patient population is significantly improved under 

the dose-painting plan compared to the homogeneous dose plan with the same mean 

dose. However, the adoption of dose-painting plan should depend on target TCP and 

setup error in practice. 
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Breast cancer is the most common cancer in women [1]. As a result of increased 

screening, the majority of patients now present with early-stage breast cancer [2]. 

Several large trials with at least 10 years follow-up have demonstrated local failure rates 

of 0.5–1% per year [3,4]. This leaves an open question on how to design a treatment for 

individual patient that can keep the same level of tumor control and reduce side effects. 

Previous efforts on boost strategies [5] and accelerated partial breast irradiation [6] 

demonstrate the potential benefits of modifying radiation dose distribution on patients. 

These provide the rational to further investigate the way of optimizing treatment. 

However, little research has addressed this optimization issue [7,8], and most of the 

existing research focused on radiotherapy only instead of modeling the whole treatment 

process which consists of surgery, radiotherapy and systemic therapy. Therefore, in this 

thesis, we developed a risk modeling framework to model the outcome of breast 

conserving therapy. Consequently, using the developed framework, we could compare 

the current uniform dose strategy and a ‘dose-painting’ strategy. 

 

Risk Modeling  

Researchers and clinicians are increasingly interested in mathematical models 

designed to predict the outcome of cancer treatment [9]. As the number and 

sophistication of risk prediction models have grown, so has need in ensuring that they 

are correctly developed, and rigorously evaluated [10,11]. The National Cancer Institute 

(NCI) has identified ‘risk prediction’ as an area of extraordinary opportunity in “The 

Nation's Investment in Cancer Research” [12]. 

 

Many of new models combine clinical and epidemiologic risk factors with new biologic, 

pathologic and genetic data to more accurately assess cancer risk in cohort studies 

[13–16]. These allow researchers to obtain baseline hazard of incidence, hazard of 

mortality from competing risks, and relative risk. However, cohort studies often focus on 

specific populations, lack covariate data, require long follow-up times, and collect only 

imprecise data on competing causes of death [17–20]. Sampling from a cohort (e.g., 

Chapter 3) to estimate relative risks and cumulative hazards with case–control designs 

can compensate for some of these limitations [21].  
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Another strategy is to combine the trial outcome data with national registry data [22] 

(Chapter 4) for developing risk prediction models. This strategy can provide detailed 

information on risk predictors effeciently. Several of these studies can be combined to 

obtain a relative risk model. Disadvantages of this approach are the difficulties of 

matching the characteristics of cohorts and the lack of national registry data for many 

detailed treatment information.  

 

The absolute risks of local recurrence in the breast cancer trials [23] or the absolute 

benefits and hazards of radiotherapy in these trials cannot be generalized easily 

because of changes in practice since the trials began [24–26]. Nevertheless, the 

quantitative relationship in these trials between local disease control and 15-year breast 

cancer mortality should still be relevant to current and future treatment decisions [4]. 

Where it is possible to estimate the absolute risk of a particular type of local recurrence 

after a particular type of surgery, it is also possible to estimate the absolute reduction in 

this risk that effective radiotherapy would achieve (as radiotherapy halves the rate at 

which the disease recurs and reduces the breast cancer death rate by about a sixth [4]) 

or that would have been avoided by more extensive surgery (as surgery eliminates the 

possibility of recurrence in the excised tissue [25]).  

 

In fact, there is no theoretical boundary to the accuracy of identifying and modeling risk 

[27]. The more predictable the risk is, the greater the rationale is for focusing prevention 

strategies on high-risk individuals. On the other hand, we can also design population-

based strategies which are more appropriate for less predictable risks. As new risk 

factors are identified, investigators are unlikely to be able to rely on single, large data 

sources to devise improved risk prediction models. Information will need to be 

assembled from different sources. Validation will be important for these models. Careful 

thoughts, appropriate conditions and model limitations should be aware by clinicians 

and researchers when they want to apply risk models in practice. 

 

We developed a risk modeling framework for simulating breast conserving therapy in 

this thesis and established the relationship between microscopic disease, surgical 
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margin, radiation dose and tumor control probability through a quantitative model 

(Chapter 4). Sequentially we applied this framework to analyze the effect of age and 

provided insights of the inferior outcome in younger patients which is explained by 

larger total microscopic disease quantity and larger clonogenic cell fraction; even 

though microscopic disease cells in the younger patients seem more radiosensitive 

(Chapter 5). Compared to the case-control model in Chapter 3, the structural modeling 

framework provides more prediction power and feasibility in understanding the tumor 

control outcome of treatments.    

 

Treatment Planning 

Radiation therapy is often a double-edged sword. Radiation is usually given to destroy 

any cancer cells that may have been left behind after a breast tumor is surgically 

removed. But if there is evidence the disease has spread regionally — to the chest wall 

and nearby lymph nodes — the chest and multiple nodes must be targeted while 

minimizing the dose to the lungs and heart. Too much radiation to the lungs for the 

purpose of the dose coverage for breast can cause an inflammatory condition known as 

pneumonitis, while in the heart it can cause thickening and stiffness of muscle tissue 

and connecting arteries, increasing the risk of heart disease [28]. 

 

It is well known that radiation boost leads to improved local control in all age groups [3]. 

However, an increased risk of fibrosis due to radiation boost was also observed in large 

trials [29]. Tools were developed for clinician to assist decision making whether to 

deliver a radiation boost or not to an individual patient [26,29]. Typically boost dose is 

delivered to the tumor bed where tumorous cells locate densely. The clinical 

observations that most of the local recurrences occur at the original tumor site provide a 

good rationale to further optimize radiation dose profile by taking into account the 

inhomogeneous distribution of tumor cells. 

 

Accelerated partial-breast irradiation (APBI) is a new treatment strategy that ultimately 

demonstrates long-term effectiveness and safety comparable to that of whole-breast 

irradiation for selected patients with early breast cancer [6]. However, no further 
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agreement exists on the critical metrics in medical practice for preferred technique or 

classifying patients. Clinicians and oncologists could apply brachytherapy, external 

beam RT, intraoperative RT or the combination of those [30]. This introduces a pressing 

need on modeling the recurrence risk of different treatments and optimizing dose 

distributions for improving outcome of tumor control and\or reducing side-effects.  

 

In this thesis, we utilized the risk modeling framework and analyzed the ‘dose-painting’ 

benefit and identified the effect of target TCP and setup error on switching to the ‘dose-

painting’ method from the ‘homogeneous dose’ method (Chapter 6). We explained the 

benefit of switching to ‘dose-painting’ strategy when the large systematic or random 

errors exist. As high risk patients have lower tumor control probability compared to low 

risk patients, we identified that adopting the ‘dose-painting’ strategy has more potential 

to improve the treatment outcome for high risk patients. The results can serve as a 

simple recipe for APBI in future research as we designed a method of applying non-

homogeneous dose for treating breast cancer. 

 

Clinical Decision Support 

Beyond the research content of breast cancer, this thesis provides a good example of 

applying data and knowledge for supporting clinical decisions (i.e., modeling the 

outcome of treatment and comparing different treatment strategies). Clinical decisions 

that are routinely taken by healthcare providers are often based on clinical guidance 

and evidence-based rules derived from medical science. However, the lack of efficiency 

in care pushes healthcare organization turning to clinical decision support (CDS) 

systems [31]. CDS through the interpretive analysis of large-scale patient data with 

intelligent and knowledge-based methods, “allow doctors and nurses to quickly gather 

information and process it in various ways in order to assist with making diagnosis and 

treatment decision” [32]. CDS can be applied in healthcare in diverse areas such as the 

examination of data from diverse monitoring devices, analyses of patient and family 

history, reviews of common characteristics and trends in medical record databases, and 

treatment outcomes as the analysis framework we built in the thesis. 
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One concept that can help address current limitations in clinical practice is called 

personalized healthcare where the CDS researchers put much effort in. It is known that 

standard treatments for many diseases are not effective in all patients. Some patients 

receive no benefit from, and are possibly harmed by, routine interventions. With 

personalized healthcare, we learn enough about a patient, and relevant healthcare 

information, to help make choices that are more likely to benefit that patient. For 

example, if we can predict which cancer patient needs a different therapy then we may 

improve outcomes and save money by not employing an ineffective or potentially 

dangerous treatment. A concomitant of personalized healthcare is the need to make 

evidence-supported decisions. We can only transform healthcare if we can effectively 

use all the information available to us to make better decisions. Although personalized 

healthcare is often discussed in the context of genomics, the idea is more than 40 years 

old and much broader than just genomics [33]. Using existing information, whether it is 

captured in a medical record, a research journal, or a gene sequence is the way of 

applying personalized healthcare. Companying the fast development of information 

technology, operational data is accumulated in organizations and the size of data 

becomes enormous. Using analytics techniques such as text analytics [34], machine 

learning [35], data mining [36], statistics [37], and natural language processing [38], 

researchers can analyze previously untapped data sources independent or together 

with their existing data to gain new insights resulting in significantly better and faster 

decisions.  

 

Limitation & Future work 

Due to the focus on risk modeling and treatment planning in this thesis, many recent 

developments in breast cancer treatment have not been addressed, e.g., oncoplastic 

surgery, chemoprevention, scintimammography, or targeted therapies. In fact, the 

absolute risk associated with a mutation in a genetic susceptibility gene is commonly 

calculated by use of pedigrees of families with many affected members [39,40]. 

Geneticists often correct for ascertainment by controlling for the family phenotypes or 

disease history. BRCA1 and/or BRCA2 mutation carriers and their families (e.g., age at 

diagnosis, cancer occurrence, tumor site, and prognosis) may contribute to the 
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heterogeneity of the disease. Factors, such as smoking, reproductive history, other 

genotypes unlinked to BRCA gene status, and interactions among these factors, may 

also modify cancer risk.  

In this thesis, we also made some simplifications in modeling the treatment, e.g., the 

microscopic disease distribution model, the surgical model and dose delivery which all 

are subject to geometric uncertainties. The microscopic disease distribution was taken 

as a one-dimensional half-Gaussian model due to the limitation of data sample number 

in the pathology data. We assumed an ellipsoid volume is removed with tumor and 

margins but in practice the surgeons might remove a half-elliptical cylinder volume in 

breast-conserving surgery. Moreover, in building prediction models, we assumed that 

the planned dose was delivered. In Chapter 6, we used a theoretical dose distribution 

instead a deliverable dose distributions. Caution is therefore needed for interpreting the 

findings. We expect more and more relevant data becoming available in future and the 

limitations in the current analysis can be addressed. 
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Summary 
 

Predicting the outcome of the treatment is important, however, difficult. Especially, a 

typical randomized control trial takes about 10 years in order to compare the long-term 

outcome of different treatments. In this thesis, I demonstrated a risk modeling 

framework which predict the treatment outcome and has added value to the current 

practice of breast conserving therapy. Further, I applied the analytics framework in 

planning new type of treatments. 

 

Specifically in this thesis, I explained why surgical resection margin is not recognized as 

a prognostic factor in breast-conserving therapy and why doctors reported different 

results in Chapter 3. The reason is that the impact of a negative margin width on local 

recurrence is limited due to the large variation of microscopic disease across patient 

population. Chapter 2 contains a complementary experiment to testify an important 

assumption in Chapter 3 that the distribution of in-vivo microscopic disease can be 

reliably estimated through ex-vivo breast specimen tissue. Unlike lung tissue, limited 

deformation of breast tissue was observed in our study. In Chapter 4, I built an 

analytical framework to estimate the outcome of breast-conserving therapy through 

simulations. I applied this framework to estimate the difference between younger and 

older patients in Chapter 5, and found that the higher local recurrence rate in younger 

patients could be explained by larger clonogenic tumor cell quantity, even though the 

tumor cells were found to be more radiosensitive. I also predicted the outcome of the 

Young-Boost trial as tumor control probability of 92% at 10 years using the same 

framework. In Chapter 6, I further developed this concept and estimated the benefit of 

switching to ‘dose-painting’ strategy from the current practice of using homogeneous 

dose. The overall tumor control probability of a patient population is significantly 

improved under the dose-painting plan compared to the homogeneous dose plan with 

the same mean dose. However, the adoption of dose-painting plan should depend on 
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target TCP and setup error in practice. Finally, I discussed state of theart of risk 

modeling and treatment planning methods, limitations of my thesis and future direction 

of research (decision support analytics) in Chapter 7.  
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APBI   Accelerated partial-breast irradiation 

BCS   Breast-conserving surgery 

BCT   Breast-conserving therapy 

CCF    Clonogenic cell fraction 

CI   Confidence Interval 

CTV   Clinical target volume 

EBCTCG   Early Breast Cancer Trialists’ Collaborative Group 

EORTC  European Organization for Research and Treatment of Cancer 

GTV   Gross tumor volume 

ICRU  International Commission on Radiation Units and Measurements 

LR   Local recurrence 

MARGINS  Multi-modality Analysis and Radiological Guidance IN breast 

conServing therapy  

MinSRM   Minimal surgical resection margin 

MSD   Microscopic disease 

NTCP   Normal tissue complication probability  

PA-Grade   Histopathology grading 

PTV   Planning target volume 

RT   Radiation Therapy / Radiotherapy 

RCTs   Randomized Controlled Trials 

SD   Standard deviation 

SRM   Surgical resection margin 

TCP   Tumor control probability 

WBI   Whole breast irradiation 

WLE   Wide-local excision  
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